IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30479-1.html
   My bibliography  Save this article

Inhibition mechanism of the chloride channel TMEM16A by the pore blocker 1PBC

Author

Listed:
  • Andy K. M. Lam

    (University of Zurich)

  • Sonja Rutz

    (University of Zurich)

  • Raimund Dutzler

    (University of Zurich)

Abstract

TMEM16A, a calcium-activated chloride channel involved in multiple cellular processes, is a proposed target for diseases such as hypertension, asthma, and cystic fibrosis. Despite these therapeutic promises, its pharmacology remains poorly understood. Here, we present a cryo-EM structure of TMEM16A in complex with the channel blocker 1PBC and a detailed functional analysis of its inhibition mechanism. A pocket located external to the neck region of the hourglass-shaped pore is responsible for open-channel block by 1PBC and presumably also by its structural analogs. The binding of the blocker stabilizes an open-like conformation of the channel that involves a rearrangement of several pore helices. The expansion of the outer pore enhances blocker sensitivity and enables 1PBC to bind at a site within the transmembrane electric field. Our results define the mechanism of inhibition and gating and will facilitate the design of new, potent TMEM16A modulators.

Suggested Citation

  • Andy K. M. Lam & Sonja Rutz & Raimund Dutzler, 2022. "Inhibition mechanism of the chloride channel TMEM16A by the pore blocker 1PBC," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30479-1
    DOI: 10.1038/s41467-022-30479-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30479-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30479-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun Suzuki & Masato Umeda & Peter J. Sims & Shigekazu Nagata, 2010. "Calcium-dependent phospholipid scrambling by TMEM16F," Nature, Nature, vol. 468(7325), pages 834-838, December.
    2. Luca Braga & Hashim Ali & Ilaria Secco & Elena Chiavacci & Guilherme Neves & Daniel Goldhill & Rebecca Penn & Jose M. Jimenez-Guardeño & Ana M. Ortega-Prieto & Rossana Bussani & Antonio Cannatà & Gior, 2021. "Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia," Nature, Nature, vol. 594(7861), pages 88-93, June.
    3. Son C. Le & Zhiguang Jia & Jianhan Chen & Huanghe Yang, 2019. "Molecular basis of PIP2-dependent regulation of the Ca2+-activated chloride channel TMEM16A," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Janine D. Brunner & Novandy K. Lim & Stephan Schenck & Alessia Duerst & Raimund Dutzler, 2014. "X-ray structure of a calcium-activated TMEM16 lipid scramblase," Nature, Nature, vol. 516(7530), pages 207-212, December.
    5. Cristina Paulino & Valeria Kalienkova & Andy K. M. Lam & Yvonne Neldner & Raimund Dutzler, 2017. "Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM," Nature, Nature, vol. 552(7685), pages 421-425, December.
    6. Young Duk Yang & Hawon Cho & Jae Yeon Koo & Min Ho Tak & Yeongyo Cho & Won-Sik Shim & Seung Pyo Park & Jesun Lee & Byeongjun Lee & Byung-Moon Kim & Ramin Raouf & Young Ki Shin & Uhtaek Oh, 2008. "TMEM16A confers receptor-activated calcium-dependent chloride conductance," Nature, Nature, vol. 455(7217), pages 1210-1215, October.
    7. Youxing Jiang & Alice Lee & Jiayun Chen & Martine Cadene & Brian T. Chait & Roderick MacKinnon, 2002. "The open pore conformation of potassium channels," Nature, Nature, vol. 417(6888), pages 523-526, May.
    8. Shangyu Dang & Shengjie Feng & Jason Tien & Christian J. Peters & David Bulkley & Marco Lolicato & Jianhua Zhao & Kathrin Zuberbühler & Wenlei Ye & Lijun Qi & Tingxu Chen & Charles S. Craik & Yuh Nung, 2017. "Cryo-EM structures of the TMEM16A calcium-activated chloride channel," Nature, Nature, vol. 552(7685), pages 426-429, December.
    9. Mattia Malvezzi & Madhavan Chalat & Radmila Janjusevic & Alessandra Picollo & Hiroyuki Terashima & Anant K. Menon & Alessio Accardi, 2013. "Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    10. Andy K. M. Lam & Jan Rheinberger & Cristina Paulino & Raimund Dutzler, 2021. "Gating the pore of the calcium-activated chloride channel TMEM16A," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    11. Andy K. M. Lam & Raimund Dutzler, 2021. "Mechanism of pore opening in the calcium-activated chloride channel TMEM16A," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melanie Arndt & Carolina Alvadia & Monique S. Straub & Vanessa Clerico Mosina & Cristina Paulino & Raimund Dutzler, 2022. "Structural basis for the activation of the lipid scramblase TMEM16F," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Shengjie Feng & Cristina Puchades & Juyeon Ko & Hao Wu & Yifei Chen & Eric E. Figueroa & Shuo Gu & Tina W. Han & Brandon Ho & Tong Cheng & Junrui Li & Brian Shoichet & Yuh Nung Jan & Yifan Cheng & Lil, 2023. "Identification of a drug binding pocket in TMEM16F calcium-activated ion channel and lipid scramblase," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melanie Arndt & Carolina Alvadia & Monique S. Straub & Vanessa Clerico Mosina & Cristina Paulino & Raimund Dutzler, 2022. "Structural basis for the activation of the lipid scramblase TMEM16F," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Zhongjie Ye & Nicola Galvanetto & Leonardo Puppulin & Simone Pifferi & Holger Flechsig & Melanie Arndt & Cesar Adolfo Sánchez Triviño & Michael Palma & Shifeng Guo & Horst Vogel & Anna Menini & Clemen, 2024. "Structural heterogeneity of the ion and lipid channel TMEM16F," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Shengjie Feng & Cristina Puchades & Juyeon Ko & Hao Wu & Yifei Chen & Eric E. Figueroa & Shuo Gu & Tina W. Han & Brandon Ho & Tong Cheng & Junrui Li & Brian Shoichet & Yuh Nung Jan & Yifan Cheng & Lil, 2023. "Identification of a drug binding pocket in TMEM16F calcium-activated ion channel and lipid scramblase," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Maria E. Falzone & Zhang Feng & Omar E. Alvarenga & Yangang Pan & ByoungCheol Lee & Xiaolu Cheng & Eva Fortea & Simon Scheuring & Alessio Accardi, 2022. "TMEM16 scramblases thin the membrane to enable lipid scrambling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Weijia Sun & Shuai Guo & Yuheng Li & JianWei Li & Caizhi Liu & Yafei Chen & Xuzhao Wang & Yingjun Tan & Hua Tian & Cheng Wang & Ruikai Du & Guohui Zhong & Sai Shi & Biao Ma & Chang Qu & Jingxuan Fu & , 2022. "Anoctamin 1 controls bone resorption by coupling Cl− channel activation with RANKL-RANK signaling transduction," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Yuqi Qin & Daqi Yu & Dan Wu & Jiangqing Dong & William Thomas Li & Chang Ye & Kai Chit Cheung & Yingyi Zhang & Yun Xu & YongQiang Wang & Yun Stone Shi & Shangyu Dang, 2023. "Cryo-EM structure of TMEM63C suggests it functions as a monomer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Panpan Zhang & Masahiro Maruoka & Ryo Suzuki & Hikaru Katani & Yu Dou & Daniel M. Packwood & Hidetaka Kosako & Motomu Tanaka & Jun Suzuki, 2023. "Extracellular calcium functions as a molecular glue for transmembrane helices to activate the scramblase Xkr4," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Baobin Li & Christopher M. Hoel & Stephen G. Brohawn, 2021. "Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to intermembrane dimerization," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Mingfeng Zhang & Yuanyue Shan & Charles D. Cox & Duanqing Pei, 2023. "A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Qi Zhang & Weichun Tang & Eduardo Stancanelli & Eunkyung Jung & Zulfeqhar Syed & Vijayakanth Pagadala & Layla Saidi & Catherine Z. Chen & Peng Gao & Miao Xu & Ivan Pavlinov & Bing Li & Wenwei Huang & , 2023. "Host heparan sulfate promotes ACE2 super-cluster assembly and enhances SARS-CoV-2-associated syncytium formation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Kaihua Zhang & Hao Wu & Nicholas Hoppe & Aashish Manglik & Yifan Cheng, 2022. "Fusion protein strategies for cryo-EM study of G protein-coupled receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Susan A. Leonhardt & Michael D. Purdy & Jonathan R. Grover & Ziwei Yang & Sandra Poulos & William E. McIntire & Elizabeth A. Tatham & Satchal K. Erramilli & Kamil Nosol & Kin Kui Lai & Shilei Ding & M, 2023. "Antiviral HIV-1 SERINC restriction factors disrupt virus membrane asymmetry," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Tobias Raisch & Andreas Brockmann & Ulrich Ebbinghaus-Kintscher & Jörg Freigang & Oliver Gutbrod & Jan Kubicek & Barbara Maertens & Oliver Hofnagel & Stefan Raunser, 2021. "Small molecule modulation of the Drosophila Slo channel elucidated by cryo-EM," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    15. Turkan Haliloglu & Nir Ben-Tal, 2008. "Cooperative Transition between Open and Closed Conformations in Potassium Channels," PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-11, August.
    16. Shana Bergman & Rosemary J. Cater & Ambrose Plante & Filippo Mancia & George Khelashvili, 2023. "Substrate binding-induced conformational transitions in the omega-3 fatty acid transporter MFSD2A," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Mingfeng Zhang & Yuanyue Shan & Duanqing Pei, 2023. "Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Elisabeth Lambert & Ahmad Reza Mehdipour & Alexander Schmidt & Gerhard Hummer & Camilo Perez, 2022. "Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Patrick Niekamp & Felix Scharte & Tolulope Sokoya & Laura Vittadello & Yeongho Kim & Yongqiang Deng & Elisabeth Südhoff & Angelika Hilderink & Mirco Imlau & Christopher J. Clarke & Michael Hensel & Ch, 2022. "Ca2+-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Ausloos, Marcel & Ivanova, Kristinka & Siwy, Zuzanna, 2004. "Searching for self-similarity in switching time and turbulent cascades in ion transport through a biochannel. A time delay asymmetry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 319-333.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30479-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.