IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30443-z.html
   My bibliography  Save this article

Novel role of the synaptic scaffold protein Dlgap4 in ventricular surface integrity and neuronal migration during cortical development

Author

Listed:
  • Delfina M. Romero

    (INSERM UMR-S 1270
    Sorbonne University
    Institut du Fer à Moulin
    Universidad de Buenos Aires, CONICET)

  • Karine Poirier

    (Paris Cité University, Necker Enfants Malades University Hospital)

  • Richard Belvindrah

    (INSERM UMR-S 1270
    Sorbonne University
    Institut du Fer à Moulin)

  • Imane Moutkine

    (INSERM UMR-S 1270
    Sorbonne University
    Institut du Fer à Moulin)

  • Anne Houllier

    (INSERM UMR-S 1270
    Sorbonne University
    Institut du Fer à Moulin)

  • Anne-Gaëlle LeMoing

    (Service of Pediatric Neurology, CHU Amiens)

  • Florence Petit

    (Department of Clinical Genetics. Hôpital Jeanne de Flandre, CHU Lille)

  • Anne Boland

    (University Paris-Saclay)

  • Stephan C. Collins

    (University of Bourgogne Franche-Comté)

  • Mariano Soiza-Reilly

    (Universidad de Buenos Aires)

  • Binnaz Yalcin

    (University of Bourgogne Franche-Comté)

  • Jamel Chelly

    (IGBMC-CNRS UMR-S 7104, INSERM UMR-S 964)

  • Jean-François Deleuze

    (University Paris-Saclay)

  • Nadia Bahi-Buisson

    (Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR-S 1163, Imagine Institute
    Paris Cité University, Imagine Institute
    Pediatric Neurology APHP- Necker Enfants Malades University Hospital
    APHP- Necker Enfants Malades University Hospital)

  • Fiona Francis

    (INSERM UMR-S 1270
    Sorbonne University
    Institut du Fer à Moulin)

Abstract

Subcortical heterotopias are malformations associated with epilepsy and intellectual disability, characterized by the presence of ectopic neurons in the white matter. Mouse and human heterotopia mutations were identified in the microtubule-binding protein Echinoderm microtubule-associated protein-like 1, EML1. Further exploring pathological mechanisms, we identified a patient with an EML1-like phenotype and a novel genetic variation in DLGAP4. The protein belongs to a membrane-associated guanylate kinase family known to function in glutamate synapses. We showed that DLGAP4 is strongly expressed in the mouse ventricular zone (VZ) from early corticogenesis, and interacts with key VZ proteins including EML1. In utero electroporation of Dlgap4 knockdown (KD) and overexpression constructs revealed a ventricular surface phenotype including changes in progenitor cell dynamics, morphology, proliferation and neuronal migration defects. The Dlgap4 KD phenotype was rescued by wild-type but not mutant DLGAP4. Dlgap4 is required for the organization of radial glial cell adherens junction components and actin cytoskeleton dynamics at the apical domain, as well as during neuronal migration. Finally, Dlgap4 heterozygous knockout (KO) mice also show developmental defects in the dorsal telencephalon. We hence identify a synapse-related scaffold protein with pleiotropic functions, influencing the integrity of the developing cerebral cortex.

Suggested Citation

  • Delfina M. Romero & Karine Poirier & Richard Belvindrah & Imane Moutkine & Anne Houllier & Anne-Gaëlle LeMoing & Florence Petit & Anne Boland & Stephan C. Collins & Mariano Soiza-Reilly & Binnaz Yalci, 2022. "Novel role of the synaptic scaffold protein Dlgap4 in ventricular surface integrity and neuronal migration during cortical development," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30443-z
    DOI: 10.1038/s41467-022-30443-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30443-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30443-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William C. Skarnes & Barry Rosen & Anthony P. West & Manousos Koutsourakis & Wendy Bushell & Vivek Iyer & Alejandro O. Mujica & Mark Thomas & Jennifer Harrow & Tony Cox & David Jackson & Jessica Sever, 2011. "A conditional knockout resource for the genome-wide study of mouse gene function," Nature, Nature, vol. 474(7351), pages 337-342, June.
    2. David V. Hansen & Jan H. Lui & Philip R. L. Parker & Arnold R. Kriegstein, 2010. "Neurogenic radial glia in the outer subventricular zone of human neocortex," Nature, Nature, vol. 464(7288), pages 554-561, March.
    3. Stephan C. Collins & Anna Mikhaleva & Katarina Vrcelj & Valerie E. Vancollie & Christel Wagner & Nestor Demeure & Helen Whitley & Meghna Kannan & Rebecca Balz & Lauren F. E. Anthony & Andrew Edwards &, 2019. "Large-scale neuroanatomical study uncovers 198 gene associations in mouse brain morphogenesis," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Tomokazu Ohshiro & Takako Yagami & Chuan Zhang & Fumio Matsuzaki, 2000. "Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast," Nature, Nature, vol. 408(6812), pages 593-596, November.
    5. Yoko Arai & Jeremy N. Pulvers & Christiane Haffner & Britta Schilling & Ina Nüsslein & Federico Calegari & Wieland B. Huttner, 2011. "Neural stem and progenitor cells shorten S-phase on commitment to neuron production," Nature Communications, Nature, vol. 2(1), pages 1-12, September.
    6. Nicolas Gaspard & Tristan Bouschet & Raphael Hourez & Jordane Dimidschstein & Gilles Naeije & Jelle van den Ameele & Ira Espuny-Camacho & Adèle Herpoel & Lara Passante & Serge N. Schiffmann & Afsaneh , 2008. "An intrinsic mechanism of corticogenesis from embryonic stem cells," Nature, Nature, vol. 455(7211), pages 351-357, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annalisa Paolino & Elizabeth H. Haines & Evan J. Bailey & Dylan A. Black & Ching Moey & Fernando García-Moreno & Linda J. Richards & Rodrigo Suárez & Laura R. Fenlon, 2023. "Non-uniform temporal scaling of developmental processes in the mammalian cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Christina Kyrousi & Adam C. O’Neill & Agnieska Brazovskaja & Zhisong He & Pavel Kielkowski & Laure Coquand & Rossella Giaimo & Pierpaolo D’ Andrea & Alexander Belka & Andrea Forero Echeverry & Davide , 2021. "Extracellular LGALS3BP regulates neural progenitor position and relates to human cortical complexity," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    3. Jingyu Zhang & Hengyu Chen & Ruoyan Li & David A Taft & Guang Yao & Fan Bai & Jianhua Xing, 2019. "Spatial clustering and common regulatory elements correlate with coordinated gene expression," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-16, March.
    4. Estelle Vincendeau & Wenming Wei & Xuefei Zhang & Cyril Planchais & Wei Yu & Hélène Lenden-Hasse & Thomas Cokelaer & Juliana Pipoli da Fonseca & Hugo Mouquet & David J. Adams & Frederick W. Alt & Step, 2022. "SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Jana Hädicke & Mario Engelmann, 2013. "Social Investigation and Long-Term Recognition Memory Performance in 129S1/SvImJ and C57BL/6JOlaHsd Mice and Their Hybrids," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-8, January.
    6. Chrysafis Vogiatzis & Mustafa Can Camur, 2019. "Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 703-718, October.
    7. Joo-Hui Han & Rajendra Karki & R. K. Subbarao Malireddi & Raghvendra Mall & Roman Sarkar & Bhesh Raj Sharma & Jonathon Klein & Harmut Berns & Harshan Pisharath & Shondra M. Pruett-Miller & Sung-Jin Ba, 2024. "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Yongcheng Jin & Ellina Mikhailova & Ming Lei & Sally A. Cowley & Tianyi Sun & Xingyun Yang & Yujia Zhang & Kaili Liu & Daniel Catarino da Silva & Luana Campos Soares & Sara Bandiera & Francis G. Szele, 2023. "Integration of 3D-printed cerebral cortical tissue into an ex vivo lesioned brain slice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Norman L. Lehman & Nathalie Spassky & Müge Sak & Amy Webb & Cory T. Zumbar & Aisulu Usubalieva & Khaled J. Alkhateeb & Joseph P. McElroy & Kirsteen H. Maclean & Paolo Fadda & Tom Liu & Vineela Gangala, 2022. "Astroblastomas exhibit radial glia stem cell lineages and differential expression of imprinted and X-inactivation escape genes," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    10. Debashish U. Menon & Oleksandr Kirsanov & Christopher B. Geyer & Terry Magnuson, 2021. "Mammalian SWI/SNF chromatin remodeler is essential for reductional meiosis in males," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    11. Alexandra K. Davies & Julian E. Alecu & Marvin Ziegler & Catherine G. Vasilopoulou & Fabrizio Merciai & Hellen Jumo & Wardiya Afshar-Saber & Mustafa Sahin & Darius Ebrahimi-Fakhari & Georg H. H. Borne, 2022. "AP-4-mediated axonal transport controls endocannabinoid production in neurons," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Larissa Seifert & Gunther Zahner & Catherine Meyer-Schwesinger & Naemi Hickstein & Silke Dehde & Sonia Wulf & Sarah M. S. Köllner & Renke Lucas & Dominik Kylies & Sarah Froembling & Stephanie Zielinsk, 2023. "The classical pathway triggers pathogenic complement activation in membranous nephropathy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Yan Geng & Lin Li & Jie Yan & Kevin Liu & Aizhen Yang & Lin Zhang & Yingzhi Shen & Han Gao & Xuefeng Wu & Imre Noth & Yong Huang & Junling Liu & Xuemei Fan, 2022. "PEAR1 regulates expansion of activated fibroblasts and deposition of extracellular matrix in pulmonary fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Naohiro Kuwayama & Tomoya Kujirai & Yusuke Kishi & Rina Hirano & Kenta Echigoya & Lingyan Fang & Sugiko Watanabe & Mitsuyoshi Nakao & Yutaka Suzuki & Kei-ichiro Ishiguro & Hitoshi Kurumizaka & Yukiko , 2023. "HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Lucia Balazova & Miroslav Balaz & Carla Horvath & Áron Horváth & Caroline Moser & Zuzana Kovanicova & Adhideb Ghosh & Umesh Ghoshdastider & Vissarion Efthymiou & Elke Kiehlmann & Wenfei Sun & Hua Dong, 2021. "GPR180 is a component of TGFβ signalling that promotes thermogenic adipocyte function and mediates the metabolic effects of the adipocyte-secreted factor CTHRC1," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    16. Lama AlAbdi & Sateesh Maddirevula & Hanan E. Shamseldin & Ebtissal Khouj & Rana Helaby & Halima Hamid & Aisha Almulhim & Mais O. Hashem & Firdous Abdulwahab & Omar Abouyousef & Mashael Alqahtani & Nor, 2023. "Diagnostic implications of pitfalls in causal variant identification based on 4577 molecularly characterized families," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Balazs V. Varga & Maryam Faiz & Helena Pivonkova & Gabriel Khelifi & Huijuan Yang & Shangbang Gao & Emma Linderoth & Mei Zhen & Ragnhildur Thora Karadottir & Samer M. Hussein & Andras Nagy, 2022. "Signal requirement for cortical potential of transplantable human neuroepithelial stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30443-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.