IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29060-7.html
   My bibliography  Save this article

Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy

Author

Listed:
  • Mingming Zhao

    (Peking University Third Hospital
    Peking University)

  • Haoran Wei

    (Huazhong University of Science and Technology)

  • Chenze Li

    (Zhongnan Hospital of Wuhan University)

  • Rui Zhan

    (Peking University)

  • Changjie Liu

    (Peking University)

  • Jianing Gao

    (Peking University)

  • Yaodong Yi

    (Zhejiang University)

  • Xiao Cui

    (Zhejiang University)

  • Wenxin Shan

    (Peking University)

  • Liang Ji

    (Peking University)

  • Bing Pan

    (Peking University)

  • Si Cheng

    (The Capital Medical University)

  • Moshi Song

    (Chinese Academy of Sciences)

  • Haipeng Sun

    (Shanghai Jiao Tong University School of Medicine)

  • Huidi Jiang

    (Zhejiang University)

  • Jun Cai

    (Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Minerva T. Garcia-Barrio

    (University of Michigan Medical Center)

  • Y. Eugene Chen

    (University of Michigan Medical Center)

  • Xiangbao Meng

    (Peking University)

  • Erdan Dong

    (Peking University Third Hospital
    Peking University)

  • Dao Wen Wang

    (Huazhong University of Science and Technology)

  • Lemin Zheng

    (Peking University
    The Capital Medical University)

Abstract

Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO.

Suggested Citation

  • Mingming Zhao & Haoran Wei & Chenze Li & Rui Zhan & Changjie Liu & Jianing Gao & Yaodong Yi & Xiao Cui & Wenxin Shan & Liang Ji & Bing Pan & Si Cheng & Moshi Song & Haipeng Sun & Huidi Jiang & Jun Cai, 2022. "Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29060-7
    DOI: 10.1038/s41467-022-29060-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29060-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29060-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gabriele G. Schiattarella & Francisco Altamirano & Dan Tong & Kristin M. French & Elisa Villalobos & Soo Young Kim & Xiang Luo & Nan Jiang & Herman I. May & Zhao V. Wang & Theodore M. Hill & Pradeep P, 2019. "Nitrosative stress drives heart failure with preserved ejection fraction," Nature, Nature, vol. 568(7752), pages 351-356, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mutian Jia & Li Chai & Jie Wang & Mengge Wang & Danhui Qin & Hui Song & Yue Fu & Chunyuan Zhao & Chengjiang Gao & Jihui Jia & Wei Zhao, 2024. "S-nitrosothiol homeostasis maintained by ADH5 facilitates STING-dependent host defense against pathogens," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Bin Li & Wen-Wu Bai & Tao Guo & Zhen-Yu Tang & Xue-Jiao Jing & Ti-Chao Shan & Sen Yin & Ying Li & Fu Wang & Mo-Li Zhu & Jun-Xiu Lu & Yong-Ping Bai & Bo Dong & Peng Li & Shuang-Xi Wang, 2024. "Statins improve cardiac endothelial function to prevent heart failure with preserved ejection fraction through upregulating circRNA-RBCK1," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yang Cao & Laurent Vergnes & Yu-Chen Wang & Calvin Pan & Karthickeyan Chella Krishnan & Timothy M. Moore & Manuel Rosa-Garrido & Todd H. Kimball & Zhiqiang Zhou & Sarada Charugundla & Christoph D. Rau, 2022. "Sex differences in heart mitochondria regulate diastolic dysfunction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Xueqin Shu & Yingying Shi & Yi Huang & Dan Yu & Baolin Sun, 2023. "Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureus to circumvent vancomycin killing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Sara Ranjbarvaziri & Aliya Zeng & Iris Wu & Amara Greer-Short & Farshad Farshidfar & Ana Budan & Emma Xu & Reva Shenwai & Matthew Kozubov & Cindy Li & Melissa Van Pell & Francis Grafton & Charles E Ma, 2024. "Targeting HDAC6 to treat heart failure with preserved ejection fraction in mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Hannah E Suhrs & Jakob Schroder & Kira B Bové & Naja D Mygind & Daria Frestad & Marie M Michelsen & Theis Lange & Ida Gustafsson & Jens Kastrup & Eva Prescott, 2020. "Inflammation, non-endothelial dependent coronary microvascular function and diastolic function—Are they linked?," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29060-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.