IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28601-4.html
   My bibliography  Save this article

Heterotypic interactions drive antibody synergy against a malaria vaccine candidate

Author

Listed:
  • Robert J. Ragotte

    (University of Oxford
    Jenner Institute, University of Oxford)

  • David Pulido

    (University of Oxford
    Jenner Institute, University of Oxford)

  • Amelia M. Lias

    (University of Oxford
    Jenner Institute, University of Oxford)

  • Doris Quinkert

    (University of Oxford
    Jenner Institute, University of Oxford)

  • Daniel G. W. Alanine

    (University of Oxford
    Jenner Institute, University of Oxford)

  • Abhishek Jamwal

    (University of Oxford)

  • Hannah Davies

    (University of Oxford
    Jenner Institute, University of Oxford)

  • Adéla Nacer

    (Bacteriology Division, MHRA-NIBSC, South Mimms, Potters Bar)

  • Edward D. Lowe

    (University of Oxford)

  • Geoffrey W. Grime

    (Surrey Ion Beam Centre, University of Surrey)

  • Joseph J. Illingworth

    (Jenner Institute, University of Oxford)

  • Robert F. Donat

    (Jenner Institute, University of Oxford)

  • Elspeth F. Garman

    (University of Oxford)

  • Paul W. Bowyer

    (Bacteriology Division, MHRA-NIBSC, South Mimms, Potters Bar)

  • Matthew K. Higgins

    (University of Oxford
    Kavli Institute of NanoTechnology Discovery, University of Oxford)

  • Simon J. Draper

    (University of Oxford
    Jenner Institute, University of Oxford)

Abstract

Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets.

Suggested Citation

  • Robert J. Ragotte & David Pulido & Amelia M. Lias & Doris Quinkert & Daniel G. W. Alanine & Abhishek Jamwal & Hannah Davies & Adéla Nacer & Edward D. Lowe & Geoffrey W. Grime & Joseph J. Illingworth &, 2022. "Heterotypic interactions drive antibody synergy against a malaria vaccine candidate," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28601-4
    DOI: 10.1038/s41467-022-28601-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28601-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28601-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fabian Sesterhenn & Che Yang & Jaume Bonet & Johannes T. Cramer & Xiaolin Wen & Yimeng Wang & Chi I. Chiang & Luciano Andres Abriata & Iga Kucharska & Giacomo Castoro & Sabrina S. Vollers & Marie Gall, 2020. "De novo protein design enables the precise induction of RSV-neutralizing antibodies," Post-Print hal-02677103, HAL.
    2. Alexander D. Douglas & Andrew R. Williams & Joseph J. Illingworth & Gathoni Kamuyu & Sumi Biswas & Anna L. Goodman & David H. Wyllie & Cécile Crosnier & Kazutoyo Miura & Gavin J. Wright & Carole A. Lo, 2011. "The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody," Nature Communications, Nature, vol. 2(1), pages 1-9, September.
    3. Dora Pinto & Young-Jun Park & Martina Beltramello & Alexandra C. Walls & M. Alejandra Tortorici & Siro Bianchi & Stefano Jaconi & Katja Culap & Fabrizia Zatta & Anna De Marco & Alessia Peter & Barbara, 2020. "Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody," Nature, Nature, vol. 583(7815), pages 290-295, July.
    4. Bruno E. Correia & John T. Bates & Rebecca J. Loomis & Gretchen Baneyx & Chris Carrico & Joseph G. Jardine & Peter Rupert & Colin Correnti & Oleksandr Kalyuzhniy & Vinayak Vittal & Mary J. Connell & E, 2014. "Proof of principle for epitope-focused vaccine design," Nature, Nature, vol. 507(7491), pages 201-206, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dapeng Li & David R. Martinez & Alexandra Schäfer & Haiyan Chen & Maggie Barr & Laura L. Sutherland & Esther Lee & Robert Parks & Dieter Mielke & Whitney Edwards & Amanda Newman & Kevin W. Bock & Mahn, 2022. "Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Leire Campos-Mata & Benjamin Trinité & Andrea Modrego & Sonia Tejedor Vaquero & Edwards Pradenas & Anna Pons-Grífols & Natalia Rodrigo Melero & Diego Carlero & Silvia Marfil & César Santiago & Dàlia R, 2024. "A monoclonal antibody targeting a large surface of the receptor binding motif shows pan-neutralizing SARS-CoV-2 activity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Emanuele Andreano & Ida Paciello & Silvia Marchese & Lorena Donnici & Giulio Pierleoni & Giulia Piccini & Noemi Manganaro & Elisa Pantano & Valentina Abbiento & Piero Pileri & Linda Benincasa & Ginevr, 2022. "Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. A. Brenda Kapingidza & Daniel J. Marston & Caitlin Harris & Daniel Wrapp & Kaitlyn Winters & Dieter Mielke & Lu Xiaozhi & Qi Yin & Andrew Foulger & Rob Parks & Maggie Barr & Amanda Newman & Alexandra , 2023. "Engineered immunogens to elicit antibodies against conserved coronavirus epitopes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. James Brett Case & Samantha Mackin & John M. Errico & Zhenlu Chong & Emily A. Madden & Bradley Whitener & Barbara Guarino & Michael A. Schmid & Kim Rosenthal & Kuishu Ren & Ha V. Dang & Gyorgy Snell &, 2022. "Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Yanqun Wang & An Yan & Deyong Song & Maoqin Duan & Chuangchuang Dong & Jiantao Chen & Zihe Jiang & Yuanzhu Gao & Muding Rao & Jianxia Feng & Zhaoyong Zhang & Ruxi Qi & Xiaomin Ma & Hong Liu & Beibei Y, 2024. "Identification of a highly conserved neutralizing epitope within the RBD region of diverse SARS-CoV-2 variants," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Peter J. Halfmann & Kathryn Loeffler & Augustine Duffy & Makoto Kuroda & Jie E. Yang & Elizabeth R. Wright & Yoshihiro Kawaoka & Ravi S. Kane, 2024. "Broad protection against clade 1 sarbecoviruses after a single immunization with cocktail spike-protein-nanoparticle vaccine," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. James W. Saville & Dhiraj Mannar & Xing Zhu & Shanti S. Srivastava & Alison M. Berezuk & Jean-Philippe Demers & Steven Zhou & Katharine S. Tuttle & Inna Sekirov & Andrew Kim & Wei Li & Dimiter S. Dimi, 2022. "Structural and biochemical rationale for enhanced spike protein fitness in delta and kappa SARS-CoV-2 variants," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Yongchuan Li & Salwa Hanim Abdul-Rashid & Raja Ariffin Raja Ghazilla, 2022. "Design Methods for the Elderly in Web of Science, Scopus, and China National Knowledge Infrastructure Databases: A Scientometric Analysis in CiteSpace," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    10. Emanuele Andreano & Ida Paciello & Giulio Pierleoni & Giuseppe Maccari & Giada Antonelli & Valentina Abbiento & Piero Pileri & Linda Benincasa & Ginevra Giglioli & Giulia Piccini & Concetta De Santi &, 2023. "mRNA vaccines and hybrid immunity use different B cell germlines against Omicron BA.4 and BA.5," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Andrew P. Hederman & Harini Natarajan & Leo Heyndrickx & Kevin K. Ariën & Joshua A. Wiener & Peter F. Wright & Evan M. Bloch & Aaron A. R. Tobian & Andrew D. Redd & Joel N. Blankson & Amihai Rottenstr, 2023. "SARS-CoV-2 vaccination elicits broad and potent antibody effector functions to variants of concern in vulnerable populations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Zhennan Zhao & Jingya Zhou & Mingxiong Tian & Min Huang & Sheng Liu & Yufeng Xie & Pu Han & Chongzhi Bai & Pengcheng Han & Anqi Zheng & Lutang Fu & Yuanzhu Gao & Qi Peng & Ying Li & Yan Chai & Zengyua, 2022. "Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Ian A. Durie & Zahra R. Tehrani & Elif Karaaslan & Teresa E. Sorvillo & Jack McGuire & Joseph W. Golden & Stephen R. Welch & Markus H. Kainulainen & Jessica R. Harmon & Jarrod J. Mousa & David Gonzale, 2022. "Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Romain Rouet & Jake Y. Henry & Matt D. Johansen & Meghna Sobti & Harikrishnan Balachandran & David B. Langley & Gregory J. Walker & Helen Lenthall & Jennifer Jackson & Stephanie Ubiparipovic & Ohan Ma, 2023. "Broadly neutralizing SARS-CoV-2 antibodies through epitope-based selection from convalescent patients," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Daming Zhou & Piyada Supasa & Chang Liu & Aiste Dijokaite-Guraliuc & Helen M. E. Duyvesteyn & Muneeswaran Selvaraj & Alexander J. Mentzer & Raksha Das & Wanwisa Dejnirattisai & Nigel Temperton & Paul , 2024. "The SARS-CoV-2 neutralizing antibody response to SD1 and its evasion by BA.2.86," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Emanuele Andreano & Ida Paciello & Giulio Pierleoni & Giulia Piccini & Valentina Abbiento & Giada Antonelli & Piero Pileri & Noemi Manganaro & Elisa Pantano & Giuseppe Maccari & Silvia Marchese & Lore, 2023. "B cell analyses after SARS-CoV-2 mRNA third vaccination reveals a hybrid immunity like antibody response," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Namrata Anand & Raphael Eguchi & Irimpan I. Mathews & Carla P. Perez & Alexander Derry & Russ B. Altman & Po-Ssu Huang, 2022. "Protein sequence design with a learned potential," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Kuan-Ying A. Huang & Xiaorui Chen & Arpita Mohapatra & Hong Thuy Vy Nguyen & Lisa Schimanski & Tiong Kit Tan & Pramila Rijal & Susan K. Vester & Rory A. Hills & Mark Howarth & Jennifer R. Keeffe & Ale, 2023. "Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Nina G. Bozhanova & Andrew I. Flyak & Benjamin P. Brown & Stormy E. Ruiz & Jordan Salas & Semi Rho & Robin G. Bombardi & Luke Myers & Cinque Soto & Justin R. Bailey & James E. Crowe & Pamela J. Bjorkm, 2022. "Computational identification of HCV neutralizing antibodies with a common HCDR3 disulfide bond motif in the antibody repertoires of infected individuals," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Wanbo Tai & Kai Yang & Yubin Liu & Ruofan Li & Shengyong Feng & Benjie Chai & Xinyu Zhuang & Shaolong Qi & Huicheng Shi & Zhida Liu & Jiaqi Lei & Enhao Ma & Weixiao Wang & Chongyu Tian & Ting Le & Jin, 2023. "A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28601-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.