IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28404-7.html
   My bibliography  Save this article

Mechanisms underlying TARP modulation of the GluA1/2-γ8 AMPA receptor

Author

Listed:
  • Beatriz Herguedas

    (Neurobiology Division MRC Laboratory of Molecular Biology
    University of Zaragoza)

  • Bianka K. Kohegyi

    (Neurobiology Division MRC Laboratory of Molecular Biology)

  • Jan-Niklas Dohrke

    (Neurobiology Division MRC Laboratory of Molecular Biology
    Universitätsmedizin Göttingen, Georg-August-Universität)

  • Jake F. Watson

    (Neurobiology Division MRC Laboratory of Molecular Biology
    Institute of Science and Technology (IST) Austria)

  • Danyang Zhang

    (Neurobiology Division MRC Laboratory of Molecular Biology)

  • Hinze Ho

    (Neurobiology Division MRC Laboratory of Molecular Biology
    University of Cambridge, Physiological Laboratory)

  • Saher A. Shaikh

    (Neurobiology Division MRC Laboratory of Molecular Biology)

  • Remigijus Lape

    (Neurobiology Division MRC Laboratory of Molecular Biology)

  • James M. Krieger

    (Neurobiology Division MRC Laboratory of Molecular Biology)

  • Ingo H. Greger

    (Neurobiology Division MRC Laboratory of Molecular Biology)

Abstract

AMPA-type glutamate receptors (AMPARs) mediate rapid signal transmission at excitatory synapses in the brain. Glutamate binding to the receptor’s ligand-binding domains (LBDs) leads to ion channel activation and desensitization. Gating kinetics shape synaptic transmission and are strongly modulated by transmembrane AMPAR regulatory proteins (TARPs) through currently incompletely resolved mechanisms. Here, electron cryo-microscopy structures of the GluA1/2 TARP-γ8 complex, in both open and desensitized states (at 3.5 Å), reveal state-selective engagement of the LBDs by the large TARP-γ8 loop (‘β1’), elucidating how this TARP stabilizes specific gating states. We further show how TARPs alter channel rectification, by interacting with the pore helix of the selectivity filter. Lastly, we reveal that the Q/R-editing site couples the channel constriction at the filter entrance to the gate, and forms the major cation binding site in the conduction path. Our results provide a mechanistic framework of how TARPs modulate AMPAR gating and conductance.

Suggested Citation

  • Beatriz Herguedas & Bianka K. Kohegyi & Jan-Niklas Dohrke & Jake F. Watson & Danyang Zhang & Hinze Ho & Saher A. Shaikh & Remigijus Lape & James M. Krieger & Ingo H. Greger, 2022. "Mechanisms underlying TARP modulation of the GluA1/2-γ8 AMPA receptor," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28404-7
    DOI: 10.1038/s41467-022-28404-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28404-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28404-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joel R. Meyerson & Janesh Kumar & Sagar Chittori & Prashant Rao & Jason Pierson & Alberto Bartesaghi & Mark L. Mayer & Sriram Subramaniam, 2014. "Structural mechanism of glutamate receptor activation and desensitization," Nature, Nature, vol. 514(7522), pages 328-334, October.
    2. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    3. Danyang Zhang & Jake F. Watson & Peter M. Matthews & Ondrej Cais & Ingo H. Greger, 2021. "Gating and modulation of a hetero-octameric AMPA glutamate receptor," Nature, Nature, vol. 594(7863), pages 454-458, June.
    4. Ian D. Coombs & David Soto & Thomas P. McGee & Matthew G. Gold & Mark Farrant & Stuart G. Cull-Candy, 2019. "Homomeric GluA2(R) AMPA receptors can conduct when desensitized," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    5. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    6. Yu Sun & Rich Olson & Michelle Horning & Neali Armstrong & Mark Mayer & Eric Gouaux, 2002. "Mechanism of glutamate receptor desensitization," Nature, Nature, vol. 417(6886), pages 245-253, May.
    7. Edward C. Twomey & Maria V. Yelshanskaya & Robert A. Grassucci & Joachim Frank & Alexander I. Sobolevsky, 2017. "Channel opening and gating mechanism in AMPA-subtype glutamate receptors," Nature, Nature, vol. 549(7670), pages 60-65, September.
    8. Alexander I. Sobolevsky & Michael P. Rosconi & Eric Gouaux, 2009. "X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor," Nature, Nature, vol. 462(7274), pages 745-756, December.
    9. Susumu Tomita & Hillel Adesnik & Masayuki Sekiguchi & Wei Zhang & Keiji Wada & James R. Howe & Roger A. Nicoll & David S. Bredt, 2005. "Stargazin modulates AMPA receptor gating and trafficking by distinct domains," Nature, Nature, vol. 435(7045), pages 1052-1058, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amanda M. Perozzo & Jochen Schwenk & Aichurok Kamalova & Terunaga Nakagawa & Bernd Fakler & Derek Bowie, 2023. "GSG1L-containing AMPA receptor complexes are defined by their spatiotemporal expression, native interactome and allosteric sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Danyang Zhang & Remigijus Lape & Saher A. Shaikh & Bianka K. Kohegyi & Jake F. Watson & Ondrej Cais & Terunaga Nakagawa & Ingo H. Greger, 2023. "Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danyang Zhang & Remigijus Lape & Saher A. Shaikh & Bianka K. Kohegyi & Jake F. Watson & Ondrej Cais & Terunaga Nakagawa & Ingo H. Greger, 2023. "Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Amanda M. Perozzo & Jochen Schwenk & Aichurok Kamalova & Terunaga Nakagawa & Bernd Fakler & Derek Bowie, 2023. "GSG1L-containing AMPA receptor complexes are defined by their spatiotemporal expression, native interactome and allosteric sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Johansen B. Amin & Miaomiao He & Ramesh Prasad & Xiaoling Leng & Huan-Xiang Zhou & Lonnie P. Wollmuth, 2023. "Two gates mediate NMDA receptor activity and are under subunit-specific regulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    13. Maciej K. Kocylowski & Hande Aypek & Wolfgang Bildl & Martin Helmstädter & Philipp Trachte & Bernhard Dumoulin & Sina Wittösch & Lukas Kühne & Ute Aukschun & Carolin Teetzen & Oliver Kretz & Botond Ga, 2022. "A slit-diaphragm-associated protein network for dynamic control of renal filtration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Michael A. Longo & Sunetra Roy & Yue Chen & Karl-Heinz Tomaszowski & Andrew S. Arvai & Jordan T. Pepper & Rebecca A. Boisvert & Selvi Kunnimalaiyaan & Caezanne Keshvani & David Schild & Albino Bacolla, 2023. "RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Leonardo Betancurt-Anzola & Markel Martínez-Carranza & Marc Delarue & Kelly M. Zatopek & Andrew F. Gardner & Ludovic Sauguet, 2023. "Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Karin Vogel & Tobias Bläske & Marie-Kristin Nagel & Christoph Globisch & Shane Maguire & Lorenz Mattes & Christian Gude & Michael Kovermann & Karin Hauser & Christine Peter & Erika Isono, 2022. "Lipid-mediated activation of plasma membrane-localized deubiquitylating enzymes modulate endosomal trafficking," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Robin Anger & Laetitia Pieulle & Meriam Shahin & Odile Valette & Hugo Guenno & Artemis Kosta & Vladimir Pelicic & Rémi Fronzes, 2023. "Structure of a heteropolymeric type 4 pilus from a monoderm bacterium," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Jie Li & Haonan Zhang & Dongyu Li & Ya-Jun Liu & Edward A. Bayer & Qiu Cui & Yingang Feng & Ping Zhu, 2023. "Structure of the transcription open complex of distinct σI factors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Hongmin Cai & Shimeng Guo & Youwei Xu & Jun Sun & Junrui Li & Zhikan Xia & Yi Jiang & Xin Xie & H. Eric Xu, 2024. "Cryo-EM structures of adenosine receptor A3AR bound to selective agonists," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28404-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.