IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28281-0.html
   My bibliography  Save this article

Adaptation to genome decay in the structure of the smallest eukaryotic ribosome

Author

Listed:
  • David Nicholson

    (University of Leeds)

  • Marco Salamina

    (Newcastle University)

  • Johan Panek

    (Newcastle University)

  • Karla Helena-Bueno

    (Newcastle University)

  • Charlotte R. Brown

    (Newcastle University)

  • Robert P. Hirt

    (Newcastle University)

  • Neil A. Ranson

    (University of Leeds)

  • Sergey V. Melnikov

    (Newcastle University
    Newcastle University)

Abstract

The evolution of microbial parasites involves the counterplay between natural selection forcing parasites to improve and genetic drifts forcing parasites to lose genes and accumulate deleterious mutations. Here, to understand how this counterplay occurs at the scale of individual macromolecules, we describe cryo-EM structure of ribosomes from Encephalitozoon cuniculi, a eukaryote with one of the smallest genomes in nature. The extreme rRNA reduction in E. cuniculi ribosomes is accompanied with unparalleled structural changes, such as the evolution of previously unknown molten rRNA linkers and bulgeless rRNA. Furthermore, E. cuniculi ribosomes withstand the loss of rRNA and protein segments by evolving an ability to use small molecules as structural mimics of degenerated rRNA and protein segments. Overall, we show that the molecular structures long viewed as reduced, degenerated, and suffering from debilitating mutations possess an array of compensatory mechanisms that allow them to remain active despite the extreme molecular reduction.

Suggested Citation

  • David Nicholson & Marco Salamina & Johan Panek & Karla Helena-Bueno & Charlotte R. Brown & Robert P. Hirt & Neil A. Ranson & Sergey V. Melnikov, 2022. "Adaptation to genome decay in the structure of the smallest eukaryotic ribosome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28281-0
    DOI: 10.1038/s41467-022-28281-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28281-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28281-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick C. Hoffmann & Jan Philipp Kreysing & Iskander Khusainov & Maarten W. Tuijtel & Sonja Welsch & Martin Beck, 2022. "Structures of the eukaryotic ribosome and its translational states in situ," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Nathan Jespersen & Kai Ehrenbolger & Rahel R. Winiger & Dennis Svedberg & Charles R. Vossbrinck & Jonas Barandun, 2022. "Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Bernhard Kuhle & Marscha Hirschi & Lili K. Doerfel & Gabriel C. Lander & Paul Schimmel, 2023. "Structural basis for a degenerate tRNA identity code and the evolution of bimodal specificity in human mitochondrial tRNA recognition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28281-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.