IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27915-z.html
   My bibliography  Save this article

Single particle cryo-EM structure of the outer hair cell motor protein prestin

Author

Listed:
  • Carmen Butan

    (Yale University School of Medicine)

  • Qiang Song

    (Yale University School of Medicine)

  • Jun-Ping Bai

    (Yale University School of Medicine)

  • Winston J. T. Tan

    (Yale University School of Medicine)

  • Dhasakumar Navaratnam

    (Yale University School of Medicine
    Yale University School of Medicine
    Yale University School of Medicine)

  • Joseph Santos-Sacchi

    (Yale University School of Medicine
    Yale University School of Medicine
    Yale University School of Medicine)

Abstract

The mammalian outer hair cell (OHC) protein prestin (Slc26a5) differs from other Slc26 family members due to its unique piezoelectric-like property that drives OHC electromotility, the putative mechanism for cochlear amplification. Here, we use cryo-electron microscopy to determine prestin’s structure at 3.6 Å resolution. Prestin is structurally similar to the anion transporter Slc26a9. It is captured in an inward-open state which may reflect prestin’s contracted state. Two well-separated transmembrane (TM) domains and two cytoplasmic sulfate transporter and anti-sigma factor antagonist (STAS) domains form a swapped dimer. The transmembrane domains consist of 14 transmembrane segments organized in two 7+7 inverted repeats, an architecture first observed in the bacterial symporter UraA. Mutation of prestin’s chloride binding site removes salicylate competition with anions while retaining the prestin characteristic displacement currents (Nonlinear Capacitance), undermining the extrinsic voltage sensor hypothesis for prestin function.

Suggested Citation

  • Carmen Butan & Qiang Song & Jun-Ping Bai & Winston J. T. Tan & Dhasakumar Navaratnam & Joseph Santos-Sacchi, 2022. "Single particle cryo-EM structure of the outer hair cell motor protein prestin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27915-z
    DOI: 10.1038/s41467-021-27915-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27915-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27915-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianying Liu & Xiang Zhang & Hui Huang & Yuxin Chen & Fang Wang & Aihua Hao & Wuqiang Zhan & Qiyu Mao & Yuxia Hu & Lin Han & Yifang Sun & Meng Zhang & Zhimin Liu & Geng-Lin Li & Weijia Zhang & Yilai S, 2023. "Asymmetric pendrin homodimer reveals its molecular mechanism as anion exchanger," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Haon Futamata & Masahiro Fukuda & Rie Umeda & Keitaro Yamashita & Atsuhiro Tomita & Satoe Takahashi & Takafumi Shikakura & Shigehiko Hayashi & Tsukasa Kusakizako & Tomohiro Nishizawa & Kazuaki Homma &, 2022. "Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27915-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.