IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27764-w.html
   My bibliography  Save this article

CD4 and CD8 co-receptors modulate functional avidity of CD1b-restricted T cells

Author

Listed:
  • Charlotte A. James

    (University of Washington)

  • Yuexin Xu

    (Clinical Research Division, Fred Hutchinson Cancer Research Center)

  • Melissa S. Aguilar

    (University of Washington)

  • Lichen Jing

    (University of Washington)

  • Erik D. Layton

    (University of Washington)

  • Martine Gilleron

    (Université de Toulouse, CNRS, UPS)

  • Adriaan J. Minnaard

    (University of Groningen)

  • Thomas J. Scriba

    (University of Cape Town)

  • Cheryl L. Day

    (Emory University)

  • Edus H. Warren

    (University of Washington
    Clinical Research Division, Fred Hutchinson Cancer Research Center
    University of Washington
    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center)

  • David M. Koelle

    (Clinical Research Division, Fred Hutchinson Cancer Research Center
    University of Washington
    University of Washington
    University of Washington)

  • Chetan Seshadri

    (University of Washington
    Tuberculosis Research and Training Center)

Abstract

T cells recognize mycobacterial glycolipid (mycolipid) antigens presented by CD1b molecules, but the role of CD4 and CD8 co-receptors in mycolipid recognition is unknown. Here we show CD1b-mycolipid tetramers reveal a hierarchy in which circulating T cells expressing CD4 or CD8 co-receptor stain with a higher tetramer mean fluorescence intensity than CD4-CD8- T cells. CD4+ primary T cells transduced with mycolipid-specific T cell receptors bind CD1b-mycolipid tetramer with a higher fluorescence intensity than CD8+ primary T cells. The presence of either CD4 or CD8 also decreases the threshold for interferon-γ secretion. Co-receptor expression increases surface expression of CD3ε, suggesting a mechanism for increased tetramer binding and activation. Targeted transcriptional profiling of mycolipid-specific T cells from individuals with active tuberculosis reveals canonical markers associated with cytotoxicity among CD8+ compared to CD4+ T cells. Thus, expression of co-receptors modulates T cell receptor avidity for mycobacterial lipids, leading to in vivo functional diversity during tuberculosis disease.

Suggested Citation

  • Charlotte A. James & Yuexin Xu & Melissa S. Aguilar & Lichen Jing & Erik D. Layton & Martine Gilleron & Adriaan J. Minnaard & Thomas J. Scriba & Cheryl L. Day & Edus H. Warren & David M. Koelle & Chet, 2022. "CD4 and CD8 co-receptors modulate functional avidity of CD1b-restricted T cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27764-w
    DOI: 10.1038/s41467-021-27764-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27764-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27764-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dietmar Zehn & Sarah Y. Lee & Michael J. Bevan, 2009. "Complete but curtailed T-cell response to very low-affinity antigen," Nature, Nature, vol. 458(7235), pages 211-214, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu Shien Chin & Erik Guillen & Laurent Chorro & Sooraj Achar & Karina Ng & Susanne Oberle & Francesca Alfei & Dietmar Zehn & Grégoire Altan-Bonnet & Fabien Delahaye & Grégoire Lauvau, 2022. "T cell receptor and IL-2 signaling strength control memory CD8+ T cell functional fitness via chromatin remodeling," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Georg Petkau & Twm J. Mitchell & Krishnendu Chakraborty & Sarah E. Bell & Vanessa D´Angeli & Louise Matheson & David J. Turner & Alexander Saveliev & Ozge Gizlenci & Fiamma Salerno & Peter D. Katsikis, 2022. "The timing of differentiation and potency of CD8 effector function is set by RNA binding proteins," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Mike B. Barnkob & Yale S. Michaels & Violaine André & Philip S. Macklin & Uzi Gileadi & Salvatore Valvo & Margarida Rei & Corinna Kulicke & Ji-Li Chen & Vitul Jain & Victoria K. Woodcock & Huw Colin-Y, 2024. "Semaphorin 3A causes immune suppression by inducing cytoskeletal paralysis in tumour-specific CD8+ T cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Alexandria C. Wells & Kaito A. Hioki & Constance C. Angelou & Adam C. Lynch & Xueting Liang & Daniel J. Ryan & Iris Thesmar & Saule Zhanybekova & Saulius Zuklys & Jacob Ullom & Agnes Cheong & Jesse Ma, 2023. "Let-7 enhances murine anti-tumor CD8 T cell responses by promoting memory and antagonizing terminal differentiation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Asif A. Dar & Dale D. Kim & Scott M. Gordon & Kathleen Klinzing & Siera Rosen & Ipsita Guha & Nadia Porter & Yohaniz Ortega & Katherine S. Forsyth & Jennifer Roof & Hossein Fazelinia & Lynn A. Spruce , 2023. "c-Myc uses Cul4b to preserve genome integrity and promote antiviral CD8+ T cell immunity," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Lion F. K. Uhl & Han Cai & Sophia L. Oram & Jagdish N. Mahale & Andrew J. MacLean & Julie M. Mazet & Theo Piccirilli & Alexander J. He & Doreen Lau & Tim Elliott & Audrey Gerard, 2023. "Interferon-γ couples CD8+ T cell avidity and differentiation during infection," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27764-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.