IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27588-8.html
   My bibliography  Save this article

Nanoparticles and photochemistry for native-like transmembrane protein footprinting

Author

Listed:
  • Jie Sun

    (Washington University in St. Louis)

  • Xiaoran Roger Liu

    (Washington University in St. Louis)

  • Shuang Li

    (Washington University School of Medicine)

  • Peng He

    (Washington University School of Medicine)

  • Weikai Li

    (Washington University School of Medicine)

  • Michael L. Gross

    (Washington University in St. Louis)

Abstract

Mass spectrometry-based footprinting can probe higher order structure of soluble proteins in their native states and serve as a complement to high-resolution approaches. Traditional footprinting approaches, however, are hampered for integral membrane proteins because their transmembrane regions are not accessible to solvent, and they contain hydrophobic residues that are generally unreactive with most chemical reagents. To address this limitation, we bond photocatalytic titanium dioxide (TiO2) nanoparticles to a lipid bilayer. Upon laser irradiation, the nanoparticles produce local concentrations of radicals that penetrate the lipid layer, which is made permeable by a simultaneous laser-initiated Paternò–Büchi reaction. This approach achieves footprinting for integral membrane proteins in liposomes, helps locate both ligand-binding residues in a transporter and ligand-induced conformational changes, and reveals structural aspects of proteins at the flexible unbound state. Overall, this approach proves effective in intramembrane footprinting and forges a connection between material science and biology.

Suggested Citation

  • Jie Sun & Xiaoran Roger Liu & Shuang Li & Peng He & Weikai Li & Michael L. Gross, 2021. "Nanoparticles and photochemistry for native-like transmembrane protein footprinting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27588-8
    DOI: 10.1038/s41467-021-27588-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27588-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27588-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sayan Gupta & Jin Chai & Jie Cheng & Rhijuta D’Mello & Mark R. Chance & Dax Fu, 2014. "Visualizing the kinetic power stroke that drives proton-coupled zinc(ii) transport," Nature, Nature, vol. 512(7512), pages 101-104, August.
    2. Weikai Li & Sol Schulman & Rachel J. Dutton & Dana Boyd & Jon Beckwith & Tom A. Rapoport, 2010. "Structure of a bacterial homologue of vitamin K epoxide reductase," Nature, Nature, vol. 463(7280), pages 507-512, January.
    3. Dong Deng & Chao Xu & Pengcheng Sun & Jianping Wu & Chuangye Yan & Mingxu Hu & Nieng Yan, 2014. "Crystal structure of the human glucose transporter GLUT1," Nature, Nature, vol. 510(7503), pages 121-125, June.
    4. Dong Deng & Pengcheng Sun & Chuangye Yan & Meng Ke & Xin Jiang & Lei Xiong & Wenlin Ren & Kunio Hirata & Masaki Yamamoto & Shilong Fan & Nieng Yan, 2015. "Molecular basis of ligand recognition and transport by glucose transporters," Nature, Nature, vol. 526(7573), pages 391-396, October.
    5. Anne Kathrine Nielsen & Ingvar R. Möller & Yong Wang & Søren G. F. Rasmussen & Kresten Lindorff-Larsen & Kasper D. Rand & Claus J. Loland, 2019. "Substrate-induced conformational dynamics of the dopamine transporter," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nan Wang & Shuo Zhang & Yafei Yuan & Hanwen Xu & Elisabeth Defossa & Hans Matter & Melissa Besenius & Volker Derdau & Matthias Dreyer & Nis Halland & Kaihui Hu He & Stefan Petry & Michael Podeschwa & , 2022. "Molecular basis for inhibiting human glucose transporters by exofacial inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yafei Yuan & Fang Kong & Hanwen Xu & Angqi Zhu & Nieng Yan & Chuangye Yan, 2022. "Cryo-EM structure of human glucose transporter GLUT4," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Elisabeth Lambert & Ahmad Reza Mehdipour & Alexander Schmidt & Gerhard Hummer & Camilo Perez, 2022. "Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Albert Suades & Aziz Qureshi & Sarah E. McComas & Mathieu Coinçon & Axel Rudling & Yurie Chatzikyriakidou & Michael Landreh & Jens Carlsson & David Drew, 2023. "Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Monique R Heitmeier & Richard C Hresko & Rachel L Edwards & Michael J Prinsen & Ma Xenia G Ilagan & Audrey R Odom John & Paul W Hruz, 2019. "Identification of druggable small molecule antagonists of the Plasmodium falciparum hexose transporter PfHT and assessment of ligand access to the glucose permeation pathway via FLAG-mediated protein ," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-20, May.
    6. Shan Lei & Jing Zhang & Nicholas Thomas Blum & Meng Li & Dong-Yang Zhang & Weimin Yin & Feng Zhao & Jing Lin & Peng Huang, 2022. "In vivo three-dimensional multispectral photoacoustic imaging of dual enzyme-driven cyclic cascade reaction for tumor catalytic therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Solveig G. Schmidt & Mette Galsgaard Malle & Anne Kathrine Nielsen & Søren S.-R. Bohr & Ciara F. Pugh & Jeppe C. Nielsen & Ida H. Poulsen & Kasper D. Rand & Nikos S. Hatzakis & Claus J. Loland, 2022. "The dopamine transporter antiports potassium to increase the uptake of dopamine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Basavraj Khanppnavar & Julian Maier & Freja Herborg & Ralph Gradisch & Erika Lazzarin & Dino Luethi & Jae-Won Yang & Chao Qi & Marion Holy & Kathrin Jäntsch & Oliver Kudlacek & Klaus Schicker & Thomas, 2022. "Structural basis of organic cation transporter-3 inhibition," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Chen Wang & Leiye Yu & Jiying Zhang & Yanxia Zhou & Bo Sun & Qingjie Xiao & Minhua Zhang & Huayi Liu & Jinhong Li & Jialu Li & Yunzi Luo & Jie Xu & Zhong Lian & Jingwen Lin & Xiang Wang & Peng Zhang &, 2023. "Structural basis of the substrate recognition and inhibition mechanism of Plasmodium falciparum nucleoside transporter PfENT1," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Yajun Fang & Yuntian Yang & Rui Xu & Mingyun Liang & Qi Mou & Shuixia Chen & Jehan Kim & Long Yi Jin & Myongsoo Lee & Zhegang Huang, 2023. "Hierarchical porous photosensitizers with efficient photooxidation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Jody L. Andersen & Gui-Xin He & Prathusha Kakarla & Ranjana KC & Sanath Kumar & Wazir Singh Lakra & Mun Mun Mukherjee & Indrika Ranaweera & Ugina Shrestha & Thuy Tran & Manuel F. Varela, 2015. "Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens," IJERPH, MDPI, vol. 12(2), pages 1-61, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27588-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.