IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27550-8.html
   My bibliography  Save this article

Divergent functionalization of aldehydes photocatalyzed by neutral eosin Y with sulfone reagents

Author

Listed:
  • Jianming Yan

    (National University of Singapore
    Chongqing Medical University)

  • Haidi Tang

    (National University of Singapore
    National University of Singapore (Suzhou) Research Institute)

  • Eugene Jun Rong Kuek

    (National University of Singapore)

  • Xiangcheng Shi

    (National University of Singapore)

  • Chenguang Liu

    (National University of Singapore)

  • Muliang Zhang

    (National University of Singapore)

  • Jared L. Piper

    (Pfizer Worldwide Research and Development)

  • Shengquan Duan

    (Pfizer Worldwide Research and Development)

  • Jie Wu

    (National University of Singapore
    National University of Singapore (Suzhou) Research Institute)

Abstract

While aldehydes represent a classic class of electrophilic synthons, the corresponding acyl radicals are inherently nucleophilic, which exhibits umpolung reactivity. Generation of acyl radicals typically requires noble metal catalysts or excess oxidants to be added. Herein, we report a convenient and green approach to access acyl radicals, capitalizing on neutral eosin Y-enabled hydrogen atom transfer (HAT) photocatalysis with aldehydes. The generated acyl radicals underwent SOMOphilic substitutions with various functionalized sulfones (X–SO2R’) to deliver value-added acyl products. The merger of eosin Y photocatalysis and sulfone-based SOMOphiles provides a versatile platform for a wide array of aldehydic C–H functionalizations, including fluoromethylthiolation, arylthiolation, alkynylation, alkenylation and azidation. The present protocol features green characteristics, such as being free of metals, harmful oxidants and additives; step-economic; redox-neutral; and amenable to scale-up assisted by continuous-flow technology.

Suggested Citation

  • Jianming Yan & Haidi Tang & Eugene Jun Rong Kuek & Xiangcheng Shi & Chenguang Liu & Muliang Zhang & Jared L. Piper & Shengquan Duan & Jie Wu, 2021. "Divergent functionalization of aldehydes photocatalyzed by neutral eosin Y with sulfone reagents," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27550-8
    DOI: 10.1038/s41467-021-27550-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27550-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27550-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shi Cao & Wei Hong & Ziqi Ye & Lei Gong, 2021. "Photocatalytic three-component asymmetric sulfonylation via direct C(sp3)-H functionalization," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian-Yu Li & Shiyan Cheng & Ziqi Ye & Tao Huang & Fuxing Yang & Yu-Mei Lin & Lei Gong, 2023. "Visible light-triggered selective C(sp2)-H/C(sp3)-H coupling of benzenes with aliphatic hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Jiapian Huang & Fei Liu & Ling-Hui Zeng & Shaoyu Li & Zhiyuan Chen & Jie Wu, 2022. "Accessing chiral sulfones bearing quaternary carbon stereocenters via photoinduced radical sulfur dioxide insertion and Truce–Smiles rearrangement," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27550-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.