IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27423-0.html
   My bibliography  Save this article

Cellular variability of nonsense-mediated mRNA decay

Author

Listed:
  • Hanae Sato

    (Albert Einstein College of Medicine)

  • Robert H. Singer

    (Albert Einstein College of Medicine
    Albert Einstein College of Medicine
    Albert Einstein College of Medicine)

Abstract

Nonsense-mediated mRNA decay (NMD) is an mRNA degradation pathway that eliminates transcripts containing premature termination codons (PTCs). Half-lives of the mRNAs containing PTCs demonstrate that a small percent escape surveillance and do not degrade. It is not known whether this escape represents variable mRNA degradation within cells or, alternatively cells within the population are resistant. Here we demonstrate a single-cell approach with a bi-directional reporter, which expresses two β-globin genes with or without a PTC in the same cell, to characterize the efficiency of NMD in individual cells. We found a broad range of NMD efficiency in the population; some cells degraded essentially all of the mRNAs, while others escaped NMD almost completely. Characterization of NMD efficiency together with NMD regulators in single cells showed cell-to-cell variability of NMD reflects the differential level of surveillance factors, SMG1 and phosphorylated UPF1. A single-cell fluorescent reporter system that enabled detection of NMD using flow cytometry revealed that this escape occurred either by translational readthrough at the PTC or by a failure of mRNA degradation after successful translation termination at the PTC.

Suggested Citation

  • Hanae Sato & Robert H. Singer, 2021. "Cellular variability of nonsense-mediated mRNA decay," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27423-0
    DOI: 10.1038/s41467-021-27423-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27423-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27423-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amos Tanay & Aviv Regev, 2017. "Scaling single-cell genomics from phenomenology to mechanism," Nature, Nature, vol. 541(7637), pages 331-338, January.
    2. Maximilian W. Popp & Lynne E. Maquat, 2015. "Attenuation of nonsense-mediated mRNA decay facilitates the response to chemotherapeutics," Nature Communications, Nature, vol. 6(1), pages 1-17, May.
    3. Tuuli Lappalainen & Michael Sammeth & Marc R. Friedländer & Peter A. C. ‘t Hoen & Jean Monlong & Manuel A. Rivas & Mar Gonzàlez-Porta & Natalja Kurbatova & Thasso Griebel & Pedro G. Ferreira & Matthia, 2013. "Transcriptome and genome sequencing uncovers functional variation in humans," Nature, Nature, vol. 501(7468), pages 506-511, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Wang & Yang Xu & Robert Wang & Beatrice Zhang & Noah Smith & Amber Notaro & Samantha Gaerlan & Eric Kutschera & Kathryn E. Kadash-Edmondson & Yi Xing & Lan Lin, 2023. "TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katharina T. Schmid & Barbara Höllbacher & Cristiana Cruceanu & Anika Böttcher & Heiko Lickert & Elisabeth B. Binder & Fabian J. Theis & Matthias Heinig, 2021. "scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    2. Chi-Fen Chang & Shu-Pin Huang & Yu-Mei Hsueh & Jiun-Hung Geng & Chao-Yuan Huang & Bo-Ying Bao, 2022. "Genetic Analysis Implicates Dysregulation of SHANK2 in Renal Cell Carcinoma Progression," IJERPH, MDPI, vol. 19(19), pages 1-9, September.
    3. Samuel S. Kim & Buu Truong & Karthik Jagadeesh & Kushal K. Dey & Amber Z. Shen & Soumya Raychaudhuri & Manolis Kellis & Alkes L. Price, 2024. "Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Nava Ehsan & Bence M. Kotis & Stephane E. Castel & Eric J. Song & Nicholas Mancuso & Pejman Mohammadi, 2024. "Haplotype-aware modeling of cis-regulatory effects highlights the gaps remaining in eQTL data," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Zhao Wang & Qian Liang & Xinyi Qian & Bolang Hu & Zhanye Zheng & Jianhua Wang & Yuelin Hu & Zhengkai Bao & Ke Zhao & Yao Zhou & Xiangling Feng & Xianfu Yi & Jin Li & Jiandang Shi & Zhe Liu & Jihui Hao, 2023. "An autoimmune pleiotropic SNP modulates IRF5 alternative promoter usage through ZBTB3-mediated chromatin looping," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    6. Chachrit Khunsriraksakul & Qinmengge Li & Havell Markus & Matthew T. Patrick & Renan Sauteraud & Daniel McGuire & Xingyan Wang & Chen Wang & Lida Wang & Siyuan Chen & Ganesh Shenoy & Bingshan Li & Xue, 2023. "Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Duy Pham & Xiao Tan & Brad Balderson & Jun Xu & Laura F. Grice & Sohye Yoon & Emily F. Willis & Minh Tran & Pui Yeng Lam & Arti Raghubar & Priyakshi Kalita-de Croft & Sunil Lakhani & Jana Vukovic & Ma, 2023. "Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    8. Yuichi Shiraishi & Ai Okada & Kenichi Chiba & Asuka Kawachi & Ikuko Omori & Raúl Nicolás Mateos & Naoko Iida & Hirofumi Yamauchi & Kenjiro Kosaki & Akihide Yoshimi, 2022. "Systematic identification of intron retention associated variants from massive publicly available transcriptome sequencing data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Axel Theorell & Yenan Troi Bryceson & Jakob Theorell, 2019. "Determination of essential phenotypic elements of clusters in high-dimensional entities—DEPECHE," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
    10. William J. Young & Najim Lahrouchi & Aaron Isaacs & ThuyVy Duong & Luisa Foco & Farah Ahmed & Jennifer A. Brody & Reem Salman & Raymond Noordam & Jan-Walter Benjamins & Jeffrey Haessler & Leo-Pekka Ly, 2022. "Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Hao Wang & Jiaxin Yang & Yu Zhang & Jianliang Qian & Jianrong Wang, 2022. "Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Lei Xiong & Kang Tian & Yuzhe Li & Weixi Ning & Xin Gao & Qiangfeng Cliff Zhang, 2022. "Online single-cell data integration through projecting heterogeneous datasets into a common cell-embedding space," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Guanghao Qi & Benjamin J. Strober & Joshua M. Popp & Rebecca Keener & Hongkai Ji & Alexis Battle, 2023. "Single-cell allele-specific expression analysis reveals dynamic and cell-type-specific regulatory effects," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Qi Jiang & Shuo Zhang & Lin Wan, 2022. "Dynamic inference of cell developmental complex energy landscape from time series single-cell transcriptomic data," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-22, January.
    15. Ashley Budu-Aggrey & Anna Kilanowski & Maria K. Sobczyk & Suyash S. Shringarpure & Ruth Mitchell & Kadri Reis & Anu Reigo & Reedik Mägi & Mari Nelis & Nao Tanaka & Ben M. Brumpton & Laurent F. Thomas , 2023. "European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Yirong Shi & Yiwei Niu & Peng Zhang & Huaxia Luo & Shuai Liu & Sijia Zhang & Jiajia Wang & Yanyan Li & Xinyue Liu & Tingrui Song & Tao Xu & Shunmin He, 2023. "Characterization of genome-wide STR variation in 6487 human genomes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Chachrit Khunsriraksakul & Daniel McGuire & Renan Sauteraud & Fang Chen & Lina Yang & Lida Wang & Jordan Hughey & Scott Eckert & J. Dylan Weissenkampen & Ganesh Shenoy & Olivia Marx & Laura Carrel & B, 2022. "Integrating 3D genomic and epigenomic data to enhance target gene discovery and drug repurposing in transcriptome-wide association studies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Shilu Zhang & Saptarshi Pyne & Stefan Pietrzak & Spencer Halberg & Sunnie Grace McCalla & Alireza Fotuhi Siahpirani & Rupa Sridharan & Sushmita Roy, 2023. "Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    19. Kensuke Yamaguchi & Kazuyoshi Ishigaki & Akari Suzuki & Yumi Tsuchida & Haruka Tsuchiya & Shuji Sumitomo & Yasuo Nagafuchi & Fuyuki Miya & Tatsuhiko Tsunoda & Hirofumi Shoda & Keishi Fujio & Kazuhiko , 2022. "Splicing QTL analysis focusing on coding sequences reveals mechanisms for disease susceptibility loci," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Luchang Ming & Debao Fu & Zhaona Wu & Hu Zhao & Xingbing Xu & Tingting Xu & Xiaohu Xiong & Mu Li & Yi Zheng & Ge Li & Ling Yang & Chunjiao Xia & Rongfang Zhou & Keyan Liao & Qian Yu & Wenqi Chai & Sij, 2023. "Transcriptome-wide association analyses reveal the impact of regulatory variants on rice panicle architecture and causal gene regulatory networks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27423-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.