IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26982-6.html
   My bibliography  Save this article

Mapping protein carboxymethylation sites provides insights into their role in proteostasis and cell proliferation

Author

Listed:
  • Simone Sanzo

    (Leibniz Institute on Aging – Fritz Lipmann Institute (FLI))

  • Katrin Spengler

    (Jena University Hospital)

  • Anja Leheis

    (Jena University Hospital)

  • Joanna M. Kirkpatrick

    (Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)
    Proteomics Science Technology Platform, The Francis Crick Institute)

  • Theresa L. Rändler

    (Jena University Hospital)

  • Tim Baldensperger

    (Martin-Luther-University Halle-Wittenberg)

  • Therese Dau

    (Leibniz Institute on Aging – Fritz Lipmann Institute (FLI))

  • Christian Henning

    (Martin-Luther-University Halle-Wittenberg)

  • Luca Parca

    (Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza)

  • Christian Marx

    (Leibniz Institute on Aging – Fritz Lipmann Institute (FLI))

  • Zhao-Qi Wang

    (Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)
    Friedrich-Schiller-University of Jena)

  • Marcus A. Glomb

    (Martin-Luther-University Halle-Wittenberg)

  • Alessandro Ori

    (Leibniz Institute on Aging – Fritz Lipmann Institute (FLI))

  • Regine Heller

    (Jena University Hospital)

Abstract

Posttranslational mechanisms play a key role in modifying the abundance and function of cellular proteins. Among these, modification by advanced glycation end products has been shown to accumulate during aging and age-associated diseases but specific protein targets and functional consequences remain largely unexplored. Here, we devise a proteomic strategy to identify sites of carboxymethyllysine modification, one of the most abundant advanced glycation end products. We identify over 1000 sites of protein carboxymethylation in mouse and primary human cells treated with the glycating agent glyoxal. By using quantitative proteomics, we find that protein glycation triggers a proteotoxic response and indirectly affects the protein degradation machinery. In primary endothelial cells, we show that glyoxal induces cell cycle perturbation and that carboxymethyllysine modification reduces acetylation of tubulins and impairs microtubule dynamics. Our data demonstrate the relevance of carboxymethyllysine modification for cellular function and pinpoint specific protein networks that might become compromised during aging.

Suggested Citation

  • Simone Sanzo & Katrin Spengler & Anja Leheis & Joanna M. Kirkpatrick & Theresa L. Rändler & Tim Baldensperger & Therese Dau & Christian Henning & Luca Parca & Christian Marx & Zhao-Qi Wang & Marcus A., 2021. "Mapping protein carboxymethylation sites provides insights into their role in proteostasis and cell proliferation," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26982-6
    DOI: 10.1038/s41467-021-26982-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26982-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26982-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qingfei Zheng & Adewola Osunsade & Yael David, 2020. "Protein arginine deiminase 4 antagonizes methylglyoxal-induced histone glycation," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Qingfei Zheng & Nathaniel D. Omans & Rachel Leicher & Adewola Osunsade & Albert S. Agustinus & Efrat Finkin-Groner & Hannah D’Ambrosio & Bo Liu & Sarat Chandarlapaty & Shixin Liu & Yael David, 2019. "Reversible histone glycation is associated with disease-related changes in chromatin architecture," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Toby Mathieson & Holger Franken & Jan Kosinski & Nils Kurzawa & Nico Zinn & Gavain Sweetman & Daniel Poeckel & Vikram S. Ratnu & Maike Schramm & Isabelle Becher & Michael Steidel & Kyung-Min Noh & Gio, 2018. "Systematic analysis of protein turnover in primary cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrik M. Hammarén & Eva-Maria Geissen & Clement M. Potel & Martin Beck & Mikhail M. Savitski, 2022. "Protein-Peptide Turnover Profiling reveals the order of PTM addition and removal during protein maturation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Feng Yuan & Yi Li & Xinyue Zhou & Peiyuan Meng & Peng Zou, 2023. "Spatially resolved mapping of proteome turnover dynamics with subcellular precision," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Daniel P. Bondeson & Zachary Mullin-Bernstein & Sydney Oliver & Thomas A. Skipper & Thomas C. Atack & Nolan Bick & Meilani Ching & Andrew A. Guirguis & Jason Kwon & Carly Langan & Dylan Millson & Bren, 2022. "Systematic profiling of conditional degron tag technologies for target validation studies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Thao Nguyen & Eli J. Costa & Tim Deibert & Jose Reyes & Felix C. Keber & Miroslav Tomschik & Michael Stadlmeier & Meera Gupta & Chirag K. Kumar & Edward R. Cruz & Amanda Amodeo & Jesse C. Gatlin & Mar, 2022. "Differential nuclear import sets the timing of protein access to the embryonic genome," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Roman Vetter & Dagmar Iber, 2022. "Precision of morphogen gradients in neural tube development," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Ziqi Liu & Fuhu Guo & Yufan Zhu & Shengnan Qin & Yuchen Hou & Haotian Guo & Feng Lin & Peng R. Chen & Xinyuan Fan, 2024. "Bioorthogonal photocatalytic proximity labeling in primary living samples," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Jana Zecha & Wassim Gabriel & Ria Spallek & Yun-Chien Chang & Julia Mergner & Mathias Wilhelm & Florian Bassermann & Bernhard Kuster, 2022. "Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Hasan Vatandaslar & Aitor Garzia & Cindy Meyer & Svenja Godbersen & Laura T. L. Brandt & Esther Griesbach & Jeffrey A. Chao & Thomas Tuschl & Markus Stoffel, 2023. "In vivo PAR-CLIP (viP-CLIP) of liver TIAL1 unveils targets regulating cholesterol synthesis and secretion," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26982-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.