IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26650-9.html
   My bibliography  Save this article

Orbital torque in magnetic bilayers

Author

Listed:
  • Dongjoon Lee

    (KU-KIST Graduate School of Converging Science and Technology, Korea University
    Center for Spintronics, Korea Institute of Science and Technology)

  • Dongwook Go

    (Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA
    Institute of Physics, Johannes Gutenberg University Mainz)

  • Hyeon-Jong Park

    (KU-KIST Graduate School of Converging Science and Technology, Korea University)

  • Wonmin Jeong

    (Center for Spintronics, Korea Institute of Science and Technology
    Korea University)

  • Hye-Won Ko

    (Korea Advanced Institute of Science and Technology)

  • Deokhyun Yun

    (Center for Spintronics, Korea Institute of Science and Technology
    Korea University)

  • Daegeun Jo

    (Pohang University of Science and Technology)

  • Soogil Lee

    (Korea Advanced Institute of Science and Technology)

  • Gyungchoon Go

    (Korea Advanced Institute of Science and Technology)

  • Jung Hyun Oh

    (Korea University)

  • Kab-Jin Kim

    (Korea Advanced Institute of Science and Technology)

  • Byong-Guk Park

    (Korea Advanced Institute of Science and Technology)

  • Byoung-Chul Min

    (Center for Spintronics, Korea Institute of Science and Technology)

  • Hyun Cheol Koo

    (KU-KIST Graduate School of Converging Science and Technology, Korea University
    Center for Spintronics, Korea Institute of Science and Technology)

  • Hyun-Woo Lee

    (Pohang University of Science and Technology
    Asia Pacific Center for Theoretical Physics)

  • OukJae Lee

    (Center for Spintronics, Korea Institute of Science and Technology)

  • Kyung-Jin Lee

    (Korea Advanced Institute of Science and Technology)

Abstract

The orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment. Analysis of the magnetic torque reveals the presence of the contribution from the orbital Hall effect in the heavy metal, which competes with the contribution from the spin Hall effect. In particular, we find that the net torque in Ni/Ta bilayers is opposite in sign to the spin Hall theory prediction but instead consistent with the orbital Hall theory, which unambiguously confirms the orbital torque generated by the orbital Hall effect. Our finding opens a possibility of utilizing the orbital current for spintronic device applications, and it will invigorate researches on spin-orbit-coupled phenomena based on orbital engineering.

Suggested Citation

  • Dongjoon Lee & Dongwook Go & Hyeon-Jong Park & Wonmin Jeong & Hye-Won Ko & Deokhyun Yun & Daegeun Jo & Soogil Lee & Gyungchoon Go & Jung Hyun Oh & Kab-Jin Kim & Byong-Guk Park & Byoung-Chul Min & Hyun, 2021. "Orbital torque in magnetic bilayers," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26650-9
    DOI: 10.1038/s41467-021-26650-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26650-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26650-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Veronika Sunko & H. Rosner & P. Kushwaha & S. Khim & F. Mazzola & L. Bawden & O. J. Clark & J. M. Riley & D. Kasinathan & M. W. Haverkort & T. K. Kim & M. Hoesch & J. Fujii & I. Vobornik & A. P. Macke, 2017. "Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking," Nature, Nature, vol. 549(7673), pages 492-496, September.
    2. Ioan Mihai Miron & Kevin Garello & Gilles Gaudin & Pierre-Jean Zermatten & Marius V. Costache & Stéphane Auffret & Sébastien Bandiera & Bernard Rodmacq & Alain Schuhl & Pietro Gambardella, 2011. "Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection," Nature, Nature, vol. 476(7359), pages 189-193, August.
    3. Xin Fan & Halise Celik & Jun Wu & Chaoying Ni & Kyung-Jin Lee & Virginia O. Lorenz & John Q. Xiao, 2014. "Quantifying interface and bulk contributions to spin–orbit torque in magnetic bilayers," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandeep Kumar & Sunil Kumar, 2023. "Ultrafast THz probing of nonlocal orbital current in transverse multilayer metallic heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Binoy K. Hazra & Banabir Pal & Jae-Chun Jeon & Robin R. Neumann & Börge Göbel & Bharat Grover & Hakan Deniz & Andriy Styervoyedov & Holger Meyerheim & Ingrid Mertig & See-Hun Yang & Stuart S. P. Parki, 2023. "Generation of out-of-plane polarized spin current by spin swapping," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuhan Liang & Di Yi & Tianxiang Nan & Shengsheng Liu & Le Zhao & Yujun Zhang & Hetian Chen & Teng Xu & Minyi Dai & Jia-Mian Hu & Ben Xu & Ji Shi & Wanjun Jiang & Rong Yu & Yuan-Hua Lin, 2023. "Field-free spin-orbit switching of perpendicular magnetization enabled by dislocation-induced in-plane symmetry breaking," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Lijun Zhu & Daniel C. Ralph, 2023. "Strong variation of spin-orbit torques with relative spin relaxation rates in ferrimagnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yong Xu & Fan Zhang & Albert Fert & Henri-Yves Jaffres & Yongshan Liu & Renyou Xu & Yuhao Jiang & Houyi Cheng & Weisheng Zhao, 2024. "Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Qu Yang & Donghyeon Han & Shishun Zhao & Jaimin Kang & Fei Wang & Sung-Chul Lee & Jiayu Lei & Kyung-Jin Lee & Byong-Guk Park & Hyunsoo Yang, 2024. "Field-free spin–orbit torque switching in ferromagnetic trilayers at sub-ns timescales," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    6. Sara Varotto & Annika Johansson & Börge Göbel & Luis M. Vicente-Arche & Srijani Mallik & Julien Bréhin & Raphaël Salazar & François Bertran & Patrick Le Fèvre & Nicolas Bergeal & Julien Rault & Ingrid, 2022. "Direct visualization of Rashba-split bands and spin/orbital-charge interconversion at KTaO3 interfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Min-Gu Kang & Jong-Guk Choi & Jimin Jeong & Jae Yeol Park & Hyeon-Jong Park & Taehwan Kim & Taekhyeon Lee & Kab-Jin Kim & Kyoung-Whan Kim & Jung Hyun Oh & Duc Duong Viet & Jong-Ryul Jeong & Jong Min Y, 2021. "Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Y. Peng & D. Salomoni & G. Malinowski & W. Zhang & J. Hohlfeld & L. D. Buda-Prejbeanu & J. Gorchon & M. Vergès & J. X. Lin & D. Lacour & R. C. Sousa & I. L. Prejbeanu & S. Mangin & M. Hehn, 2023. "In-plane reorientation induced single laser pulse magnetization reversal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Hao Wu & Hantao Zhang & Baomin Wang & Felix Groß & Chao-Yao Yang & Gengfei Li & Chenyang Guo & Haoran He & Kin Wong & Di Wu & Xiufeng Han & Chih-Huang Lai & Joachim Gräfe & Ran Cheng & Kang L. Wang, 2022. "Current-induced Néel order switching facilitated by magnetic phase transition," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Yuki Hibino & Tomohiro Taniguchi & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa, 2021. "Giant charge-to-spin conversion in ferromagnet via spin-orbit coupling," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    11. Qianbiao Liu & Long Liu & Guozhong Xing & Lijun Zhu, 2024. "Asymmetric magnetization switching and programmable complete Boolean logic enabled by long-range intralayer Dzyaloshinskii-Moriya interaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Yudi Dai & Junlin Xiong & Yanfeng Ge & Bin Cheng & Lizheng Wang & Pengfei Wang & Zenglin Liu & Shengnan Yan & Cuiwei Zhang & Xianghan Xu & Youguo Shi & Sang-Wook Cheong & Cong Xiao & Shengyuan A. Yang, 2024. "Interfacial magnetic spin Hall effect in van der Waals Fe3GeTe2/MoTe2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Chao Yun & Zhongyu Liang & Aleš Hrabec & Zhentao Liu & Mantao Huang & Leran Wang & Yifei Xiao & Yikun Fang & Wei Li & Wenyun Yang & Yanglong Hou & Jinbo Yang & Laura J. Heyderman & Pietro Gambardella , 2023. "Electrically programmable magnetic coupling in an Ising network exploiting solid-state ionic gating," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Cuimei Cao & Shiwei Chen & Rui-Chun Xiao & Zengtai Zhu & Guoqiang Yu & Yangping Wang & Xuepeng Qiu & Liang Liu & Tieyang Zhao & Ding-Fu Shao & Yang Xu & Jingsheng Chen & Qingfeng Zhan, 2023. "Anomalous spin current anisotropy in a noncollinear antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Haiyu Wang & Hao Wu & Jie Zhang & Yingjie Liu & Dongdong Chen & Chandan Pandey & Jialiang Yin & Dahai Wei & Na Lei & Shuyuan Shi & Haichang Lu & Peng Li & Albert Fert & Kang L. Wang & Tianxiao Nie & W, 2023. "Room temperature energy-efficient spin-orbit torque switching in two-dimensional van der Waals Fe3GeTe2 induced by topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Cécile Grezes & Aurélie Kandazoglou & Maxen Cosset-Cheneau & Luis M. Vicente Arche & Paul Noël & Paolo Sgarro & Stephane Auffret & Kevin Garello & Manuel Bibes & Laurent Vila & Jean-Philippe Attané, 2023. "Non-volatile electric control of spin-orbit torques in an oxide two-dimensional electron gas," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. M. Usama Hasan & Alexander E. Kossak & Geoffrey S. D. Beach, 2023. "Large exchange bias enhancement and control of ferromagnetic energy landscape by solid-state hydrogen gating," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Yunfeng You & Hua Bai & Xiaoyu Feng & Xiaolong Fan & Lei Han & Xiaofeng Zhou & Yongjian Zhou & Ruiqi Zhang & Tongjin Chen & Feng Pan & Cheng Song, 2021. "Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    19. Hao Wu & Aitian Chen & Peng Zhang & Haoran He & John Nance & Chenyang Guo & Julian Sasaki & Takanori Shirokura & Pham Nam Hai & Bin Fang & Seyed Armin Razavi & Kin Wong & Yan Wen & Yinchang Ma & Guoqi, 2021. "Magnetic memory driven by topological insulators," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    20. Liang Liu & Chenghang Zhou & Tieyang Zhao & Bingqing Yao & Jing Zhou & Xinyu Shu & Shaohai Chen & Shu Shi & Shibo Xi & Da Lan & Weinan Lin & Qidong Xie & Lizhu Ren & Zhaoyang Luo & Chao Sun & Ping Yan, 2022. "Current-induced self-switching of perpendicular magnetization in CoPt single layer," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26650-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.