IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26606-z.html
   My bibliography  Save this article

Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing

Author

Listed:
  • Bo Dai

    (University of Shanghai for Science and Technology)

  • Liang Zhang

    (University of Shanghai for Science and Technology)

  • Chenglong Zhao

    (University of Dayton
    University of Dayton)

  • Hunter Bachman

    (Duke University)

  • Ryan Becker

    (Duke University)

  • John Mai

    (University of Southern California)

  • Ziao Jiao

    (University of Shanghai for Science and Technology)

  • Wei Li

    (University of Shanghai for Science and Technology)

  • Lulu Zheng

    (University of Shanghai for Science and Technology)

  • Xinjun Wan

    (University of Shanghai for Science and Technology)

  • Tony Jun Huang

    (Duke University)

  • Songlin Zhuang

    (University of Shanghai for Science and Technology)

  • Dawei Zhang

    (University of Shanghai for Science and Technology)

Abstract

After half a billion years of evolution, arthropods have developed sophisticated compound eyes with extraordinary visual capabilities that have inspired the development of artificial compound eyes. However, the limited 2D nature of most traditional fabrication techniques makes it challenging to directly replicate these natural systems. Here, we present a biomimetic apposition compound eye fabricated using a microfluidic-assisted 3D-printing technique. Each microlens is connected to the bottom planar surface of the eye via intracorporal, zero-crosstalk refractive-index-matched waveguides to mimic the rhabdoms of a natural eye. Full-colour wide-angle panoramic views and position tracking of a point source are realized by placing the fabricated eye directly on top of a commercial imaging sensor. As a biomimetic analogue to naturally occurring compound eyes, the eye’s full-colour 3D to 2D mapping capability has the potential to enable a wide variety of applications from improving endoscopic imaging to enhancing machine vision for facilitating human–robot interactions.

Suggested Citation

  • Bo Dai & Liang Zhang & Chenglong Zhao & Hunter Bachman & Ryan Becker & John Mai & Ziao Jiao & Wei Li & Lulu Zheng & Xinjun Wan & Tony Jun Huang & Songlin Zhuang & Dawei Zhang, 2021. "Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26606-z
    DOI: 10.1038/s41467-021-26606-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26606-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26606-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heung Cho Ko & Mark P. Stoykovich & Jizhou Song & Viktor Malyarchuk & Won Mook Choi & Chang-Jae Yu & Joseph B. Geddes III & Jianliang Xiao & Shuodao Wang & Yonggang Huang & John A. Rogers, 2008. "A hemispherical electronic eye camera based on compressible silicon optoelectronics," Nature, Nature, vol. 454(7205), pages 748-753, August.
    2. Kan Zhang & Yei Hwan Jung & Solomon Mikael & Jung-Hun Seo & Munho Kim & Hongyi Mi & Han Zhou & Zhenyang Xia & Weidong Zhou & Shaoqin Gong & Zhenqiang Ma, 2017. "Origami silicon optoelectronics for hemispherical electronic eye systems," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    3. Jean Vannier & Brigitte Schoenemann & Thomas Gillot & Sylvain Charbonnier & Euan Clarkson, 2016. "Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    4. Leilei Gu & Swapnadeep Poddar & Yuanjing Lin & Zhenghao Long & Daquan Zhang & Qianpeng Zhang & Lei Shu & Xiao Qiu & Matthew Kam & Ali Javey & Zhiyong Fan, 2020. "A biomimetic eye with a hemispherical perovskite nanowire array retina," Nature, Nature, vol. 581(7808), pages 278-282, May.
    5. Timo Gissibl & Simon Thiele & Alois Herkommer & Harald Giessen, 2016. "Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    6. Young Min Song & Yizhu Xie & Viktor Malyarchuk & Jianliang Xiao & Inhwa Jung & Ki-Joong Choi & Zhuangjian Liu & Hyunsung Park & Chaofeng Lu & Rak-Hwan Kim & Rui Li & Kenneth B. Crozier & Yonggang Huan, 2013. "Digital cameras with designs inspired by the arthropod eye," Nature, Nature, vol. 497(7447), pages 95-99, May.
    7. D. E. Smalley & E. Nygaard & K. Squire & J. Van Wagoner & J. Rasmussen & S. Gneiting & K. Qaderi & J. Goodsell & W. Rogers & M. Lindsey & K. Costner & A. Monk & M. Pearson & B. Haymore & J. Peatross, 2018. "A photophoretic-trap volumetric display," Nature, Nature, vol. 553(7689), pages 486-490, January.
    8. Piergiorgio Caramazza & Oisín Moran & Roderick Murray-Smith & Daniele Faccio, 2019. "Transmission of natural scene images through a multimode fibre," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    9. John R. Paterson & Diego C. García-Bellido & Michael S. Y. Lee & Glenn A. Brock & James B. Jago & Gregory D. Edgecombe, 2011. "Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes," Nature, Nature, vol. 480(7376), pages 237-240, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenghao Long & Xiao Qiu & Chak Lam Jonathan Chan & Zhibo Sun & Zhengnan Yuan & Swapnadeep Poddar & Yuting Zhang & Yucheng Ding & Leilei Gu & Yu Zhou & Wenying Tang & Abhishek Kumar Srivastava & Cunji, 2023. "A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Xu Luo & Chen Chen & Zixi He & Min Wang & Keyuan Pan & Xuemei Dong & Zifan Li & Bin Liu & Zicheng Zhang & Yueyue Wu & Chaoyi Ban & Rong Chen & Dengfeng Zhang & Kaili Wang & Qiye Wang & Junyue Li & Gan, 2024. "A bionic self-driven retinomorphic eye with ionogel photosynaptic retina," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Zhi-Yong Hu & Yong-Lai Zhang & Chong Pan & Jian-Yu Dou & Zhen-Ze Li & Zhen-Nan Tian & Jiang-Wei Mao & Qi-Dai Chen & Hong-Bo Sun, 2022. "Miniature optoelectronic compound eye camera," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Chenhao Li & Torsten Wieduwilt & Fedja J. Wendisch & Andrés Márquez & Leonardo de S. Menezes & Stefan A. Maier & Markus A. Schmidt & Haoran Ren, 2023. "Metafiber transforming arbitrarily structured light," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Rui Xu & Zhiqiang Zeng & Yong Lei, 2022. "Well-defined nanostructuring with designable anodic aluminum oxide template," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Po-Han Huang & Miku Laakso & Pierre Edinger & Oliver Hartwig & Georg S. Duesberg & Lee-Lun Lai & Joachim Mayer & Johan Nyman & Carlos Errando-Herranz & Göran Stemme & Kristinn B. Gylfason & Frank Nikl, 2023. "Three-dimensional printing of silica glass with sub-micrometer resolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. You Meng & Xiaocui Li & Xiaolin Kang & Wanpeng Li & Wei Wang & Zhengxun Lai & Weijun Wang & Quan Quan & Xiuming Bu & SenPo Yip & Pengshan Xie & Dong Chen & Dengji Li & Fei Wang & Chi-Fung Yeung & Chan, 2023. "Van der Waals nanomesh electronics on arbitrary surfaces," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Zhoutian Liu & Lele Wang & Yuan Meng & Tiantian He & Sifeng He & Yousi Yang & Liuyue Wang & Jiading Tian & Dan Li & Ping Yan & Mali Gong & Qiang Liu & Qirong Xiao, 2022. "All-fiber high-speed image detection enabled by deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Ting Jiang & Yiru Wang & Yingshuang Zheng & Le Wang & Xiang He & Liqiang Li & Yunfeng Deng & Huanli Dong & Hongkun Tian & Yanhou Geng & Linghai Xie & Yong Lei & Haifeng Ling & Deyang Ji & Wenping Hu, 2023. "Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Chengyu Wang & Yangshuang Bian & Kai Liu & Mingcong Qin & Fan Zhang & Mingliang Zhu & Wenkang Shi & Mingchao Shao & Shengcong Shang & Jiaxin Hong & Zhiheng Zhu & Zhiyuan Zhao & Yunqi Liu & Yunlong Guo, 2024. "Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Xiaopeng Feng & Chenglong Li & Jinmei Song & Yuhong He & Wei Qu & Weijun Li & Keke Guo & Lulu Liu & Bai Yang & Haotong Wei, 2024. "Differential perovskite hemispherical photodetector for intelligent imaging and location tracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Kuo Lu & Jin Xie & Risen Wang & Lei Li & Wenzhe Li & Yuning Jiang, 2022. "A closed-loop intelligent adjustment of process parameters in precise and micro hot-embossing using an in-process optic detection," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2341-2355, December.
    14. Haoran Ren & Jaehyuck Jang & Chenhao Li & Andreas Aigner & Malte Plidschun & Jisoo Kim & Junsuk Rho & Markus A. Schmidt & Stefan A. Maier, 2022. "An achromatic metafiber for focusing and imaging across the entire telecommunication range," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Yingjie Tang & Peng Jin & Yan Wang & Dingwei Li & Yitong Chen & Peng Ran & Wei Fan & Kun Liang & Huihui Ren & Xuehui Xu & Rui Wang & Yang (Michael) Yang & Bowen Zhu, 2023. "Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Seongchan Kim & Yoon Young Choi & Taewan Kim & Yong Min Kim & Dong Hae Ho & Young Jin Choi & Dong Gue Roe & Ju-Hee Lee & Joongpill Park & Ji-Woong Choi & Jeong Won Kim & Jin-Hong Park & Sae Byeok Jo &, 2022. "A biomimetic ocular prosthesis system: emulating autonomic pupil and corneal reflections," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Zülal Cibir & Jacqueline Hassel & Justin Sonneck & Lennart Kowitz & Alexander Beer & Andreas Kraus & Gabriel Hallekamp & Martin Rosenkranz & Pascal Raffelberg & Sven Olfen & Kamil Smilowski & Roman Bu, 2023. "ComplexEye: a multi-lens array microscope for high-throughput embedded immune cell migration analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Daeho Yang & Wontaek Seo & Hyeonseung Yu & Sun Il Kim & Bongsu Shin & Chang-Kun Lee & Seokil Moon & Jungkwuen An & Jong-Young Hong & Geeyoung Sung & Hong-Seok Lee, 2022. "Diffraction-engineered holography: Beyond the depth representation limit of holographic displays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Christian Becker & Bin Bao & Dmitriy D. Karnaushenko & Vineeth Kumar Bandari & Boris Rivkin & Zhe Li & Maryam Faghih & Daniil Karnaushenko & Oliver G. Schmidt, 2022. "A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Konstantinos Alexopoulos & Bryn Davies, 2022. "Asymptotic analysis of subwavelength halide perovskite resonators," Partial Differential Equations and Applications, Springer, vol. 3(4), pages 1-28, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26606-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.