IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26366-w.html
   My bibliography  Save this article

Structural basis of soluble membrane attack complex packaging for clearance

Author

Listed:
  • Anaïs Menny

    (Sir Ernst Chain Building, Imperial College London)

  • Marie V. Lukassen

    (Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University
    Netherlands Proteomics Center)

  • Emma C. Couves

    (Sir Ernst Chain Building, Imperial College London)

  • Vojtech Franc

    (Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University
    Netherlands Proteomics Center)

  • Albert J. R. Heck

    (Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University
    Netherlands Proteomics Center)

  • Doryen Bubeck

    (Sir Ernst Chain Building, Imperial College London)

Abstract

Unregulated complement activation causes inflammatory and immunological pathologies with consequences for human disease. To prevent bystander damage during an immune response, extracellular chaperones (clusterin and vitronectin) capture and clear soluble precursors to the membrane attack complex (sMAC). However, how these chaperones block further polymerization of MAC and prevent the complex from binding target membranes remains unclear. Here, we address that question by combining cryo electron microscopy (cryoEM) and cross-linking mass spectrometry (XL-MS) to solve the structure of sMAC. Together our data reveal how clusterin recognizes and inhibits polymerizing complement proteins by binding a negatively charged surface of sMAC. Furthermore, we show that the pore-forming C9 protein is trapped in an intermediate conformation whereby only one of its two transmembrane β-hairpins has unfurled. This structure provides molecular details for immune pore formation and helps explain a complement control mechanism that has potential implications for how cell clearance pathways mediate immune homeostasis.

Suggested Citation

  • Anaïs Menny & Marie V. Lukassen & Emma C. Couves & Vojtech Franc & Albert J. R. Heck & Doryen Bubeck, 2021. "Structural basis of soluble membrane attack complex packaging for clearance," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26366-w
    DOI: 10.1038/s41467-021-26366-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26366-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26366-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhen-Lin Chen & Jia-Ming Meng & Yong Cao & Ji-Li Yin & Run-Qian Fang & Sheng-Bo Fan & Chao Liu & Wen-Feng Zeng & Yue-He Ding & Dan Tan & Long Wu & Wen-Jing Zhou & Hao Chi & Rui-Xiang Sun & Meng-Qiu Do, 2019. "A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Katerina Naydenova & Christopher J. Russo, 2017. "Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
    3. Marina Serna & Joanna L. Giles & B. Paul Morgan & Doryen Bubeck, 2016. "Structural basis of complement membrane attack complex formation," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    4. David Tomasek & Shaun Rawson & James Lee & Joseph S. Wzorek & Stephen C. Harrison & Zongli Li & Daniel Kahne, 2020. "Structure of a nascent membrane protein as it folds on the BAM complex," Nature, Nature, vol. 583(7816), pages 473-478, July.
    5. Anaïs Menny & Marina Serna & Courtney M. Boyd & Scott Gardner & Agnel Praveen Joseph & B. Paul Morgan & Maya Topf & Nicholas J. Brooks & Doryen Bubeck, 2018. "CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    6. Bradley A. Spicer & Ruby H. P. Law & Tom T. Caradoc-Davies & Sue M. Ekkel & Charles Bayly-Jones & Siew-Siew Pang & Paul J. Conroy & Georg Ramm & Mazdak Radjainia & Hariprasad Venugopal & James C. Whis, 2018. "The first transmembrane region of complement component-9 acts as a brake on its self-assembly," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    7. Siew Siew Pang & Charles Bayly-Jones & Mazdak Radjainia & Bradley A. Spicer & Ruby H. P. Law & Adrian W. Hodel & Edward S. Parsons & Susan M. Ekkel & Paul J. Conroy & Georg Ramm & Hariprasad Venugopal, 2019. "The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emma C. Couves & Scott Gardner & Tomas B. Voisin & Jasmine K. Bickel & Phillip J. Stansfeld & Edward W. Tate & Doryen Bubeck, 2023. "Structural basis for membrane attack complex inhibition by CD59," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Jiao & François Dehez & Tao Ni & Xiulian Yu & Jeremy S. Dittman & Robert Gilbert & Christophe Chipot & Simon Scheuring, 2022. "Perforin-2 clockwise hand-over-hand pre-pore to pore transition mechanism," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Emma C. Couves & Scott Gardner & Tomas B. Voisin & Jasmine K. Bickel & Phillip J. Stansfeld & Edward W. Tate & Doryen Bubeck, 2023. "Structural basis for membrane attack complex inhibition by CD59," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Runrun Wu & Jeremy W. Bakelar & Karl Lundquist & Zijian Zhang & Katie M. Kuo & David Ryoo & Yui Tik Pang & Chen Sun & Tommi White & Thomas Klose & Wen Jiang & James C. Gumbart & Nicholas Noinaj, 2021. "Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Radostin Danev & Matthew Belousoff & Yi-Lynn Liang & Xin Zhang & Fabian Eisenstein & Denise Wootten & Patrick M. Sexton, 2021. "Routine sub-2.5 Å cryo-EM structure determination of GPCRs," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Alexander Harjung & Alessandro Fracassi & Neal K. Devaraj, 2024. "Encoding extracellular modification of artificial cell membranes using engineered self-translocating proteins," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Fangzhou Hao & Jieran Ma & Linhuan Luo & Weijun Dang & Yiwei Xue, 2023. "Power distribution network inspection vision system based on bionic vision image processing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(2), pages 568-577, April.
    7. Hagen Sülzen & Jakub Began & Arun Dhillon & Sami Kereïche & Petr Pompach & Jitka Votrubova & Farnaz Zahedifard & Adriana Šubrtova & Marie Šafner & Martin Hubalek & Maaike Thompson & Martin Zoltner & S, 2023. "Cryo-EM structures of Trypanosoma brucei gambiense ISG65 with human complement C3 and C3b and their roles in alternative pathway restriction," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Fred E. Fregoso & Malgorzata Boczkowska & Grzegorz Rebowski & Peter J. Carman & Trevor Eeuwen & Roberto Dominguez, 2023. "Mechanism of synergistic activation of Arp2/3 complex by cortactin and WASP-family proteins," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Li Wang & Jiali Yu & Zishuo Yu & Qianmin Wang & Wanjun Li & Yulei Ren & Zhenguo Chen & Shuang He & Yanhui Xu, 2022. "Structure of nucleosome-bound human PBAF complex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Anjie Li & Tingting You & Xiaojie Pang & Yidi Wang & Lijin Tian & Xiaobo Li & Zhenfeng Liu, 2024. "Structural basis for an early stage of the photosystem II repair cycle in Chlamydomonas reinhardtii," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Dan-Dan Liu & Wenlong Ding & Jin-Tao Cheng & Qiushi Wei & Yinuo Lin & Tian-Yi Zhu & Jing Tian & Ke Sun & Long Zhang & Peilong Lu & Fan Yang & Chao Liu & Shibing Tang & Bing Yang, 2024. "Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Hunter L. Abrahamsen & Tristan C. Sanford & Casie E. Collamore & Bronte A. Johnstone & Michael J. Coyne & Leonor García-Bayona & Michelle P. Christie & Jordan C. Evans & Allison J. Farrand & Katia Flo, 2024. "Distant relatives of a eukaryotic cell-specific toxin family evolved a complement-like mechanism to kill bacteria," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Antonia Moll & Lisa Marie Ramirez & Momchil Ninov & Juliane Schwarz & Henning Urlaub & Markus Zweckstetter, 2022. "Hsp multichaperone complex buffers pathologically modified Tau," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Yida Jiang & Xinghe Zhang & Honggang Nie & Jianxiong Fan & Shuangshuang Di & Hui Fu & Xiu Zhang & Lijuan Wang & Chun Tang, 2024. "Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Tomáš Kovaľ & Nabajyoti Borah & Petra Sudzinová & Barbora Brezovská & Hana Šanderová & Viola Vaňková Hausnerová & Alena Křenková & Martin Hubálek & Mária Trundová & Kristýna Adámková & Jarmila Dušková, 2024. "Mycobacterial HelD connects RNA polymerase recycling with transcription initiation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    16. Katherine L. Fenn & Jim E. Horne & Joel A. Crossley & Nils Böhringer & Romany J. Horne & Till F. Schäberle & Antonio N. Calabrese & Sheena E. Radford & Neil A. Ranson, 2024. "Outer membrane protein assembly mediated by BAM-SurA complexes," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Ravi R. Sonani & Lee K. Palmer & Nathaniel C. Esteves & Abigail A. Horton & Amanda L. Sebastian & Rebecca J. Kelly & Fengbin Wang & Mark A. B. Kreutzberger & William K. Russell & Petr G. Leiman & Birg, 2024. "An extensive disulfide bond network prevents tail contraction in Agrobacterium tumefaciens phage Milano," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Guendalina Marini & Brad Poland & Chris Leininger & Natalya Lukoyanova & Dan Spielbauer & Jennifer K. Barry & Dan Altier & Amy Lum & Eric Scolaro & Claudia Pérez Ortega & Nasser Yalpani & Gary Sandahl, 2023. "Structural journey of an insecticidal protein against western corn rootworm," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Sunita Gulati & Frank J Beurskens & Bart-Jan de Kreuk & Marcel Roza & Bo Zheng & Rosane B DeOliveira & Jutamas Shaughnessy & Nancy A Nowak & Ronald P Taylor & Marina Botto & Xianbao He & Robin R Ingal, 2019. "Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody," PLOS Biology, Public Library of Science, vol. 17(6), pages 1-29, June.
    20. Matthew Day & Bilal Tetik & Milena Parlak & Yasser Almeida-Hernández & Markus Räschle & Farnusch Kaschani & Heike Siegert & Anika Marko & Elsa Sanchez-Garcia & Markus Kaiser & Isabel A. Barker & Laure, 2024. "TopBP1 utilises a bipartite GINS binding mode to support genome replication," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26366-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.