IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26350-4.html
   My bibliography  Save this article

Selection for constrained peptides that bind to a single target protein

Author

Listed:
  • Andrew M. King

    (Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard)

  • Daniel A. Anderson

    (Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology)

  • Emerson Glassey

    (Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology)

  • Thomas H. Segall-Shapiro

    (Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology)

  • Zhengan Zhang

    (Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology)

  • David L. Niquille

    (Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology)

  • Amanda C. Embree

    (Broad Institute of MIT and Harvard)

  • Katelin Pratt

    (Broad Institute of MIT and Harvard)

  • Thomas L. Williams

    (Broad Institute of MIT and Harvard)

  • D. Benjamin Gordon

    (Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard)

  • Christopher A. Voigt

    (Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology
    Broad Institute of MIT and Harvard)

Abstract

Peptide secondary metabolites are common in nature and have diverse pharmacologically-relevant functions, from antibiotics to cross-kingdom signaling. Here, we present a method to design large libraries of modified peptides in Escherichia coli and screen them in vivo to identify those that bind to a single target-of-interest. Constrained peptide scaffolds were produced using modified enzymes gleaned from microbial RiPP (ribosomally synthesized and post-translationally modified peptide) pathways and diversified to build large libraries. The binding of a RiPP to a protein target leads to the intein-catalyzed release of an RNA polymerase σ factor, which drives the expression of selectable markers. As a proof-of-concept, a selection was performed for binding to the SARS-CoV-2 Spike receptor binding domain. A 1625 Da constrained peptide (AMK-1057) was found that binds with similar affinity (990 ± 5 nM) as an ACE2-derived peptide. This demonstrates a generalizable method to identify constrained peptides that adhere to a single protein target, as a step towards “molecular glues” for therapeutics and diagnostics.

Suggested Citation

  • Andrew M. King & Daniel A. Anderson & Emerson Glassey & Thomas H. Segall-Shapiro & Zhengan Zhang & David L. Niquille & Amanda C. Embree & Katelin Pratt & Thomas L. Williams & D. Benjamin Gordon & Chri, 2021. "Selection for constrained peptides that bind to a single target protein," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26350-4
    DOI: 10.1038/s41467-021-26350-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26350-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26350-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun Lan & Jiwan Ge & Jinfang Yu & Sisi Shan & Huan Zhou & Shilong Fan & Qi Zhang & Xuanling Shi & Qisheng Wang & Linqi Zhang & Xinquan Wang, 2020. "Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor," Nature, Nature, vol. 581(7807), pages 215-220, May.
    2. Johannes H. Urban & Markus A. Moosmeier & Tobias Aumüller & Marcus Thein & Tjibbe Bosma & Rick Rink & Katharina Groth & Moritz Zulley & Katja Siegers & Kathrin Tissot & Gert N. Moll & Josef Prassler, 2017. "Phage display and selection of lanthipeptides on the carboxy-terminus of the gene-3 minor coat protein," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Tal Noy-Porat & Efi Makdasi & Ron Alcalay & Adva Mechaly & Yinon Levy & Adi Bercovich-Kinori & Ayelet Zauberman & Hadas Tamir & Yfat Yahalom-Ronen & Ma’ayan Israeli & Eyal Epstein & Hagit Achdout & Sh, 2020. "A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Alison G. Tebo & Arnaud Gautier, 2019. "Author Correction: A split fluorescent reporter with rapid and reversible complementation," Nature Communications, Nature, vol. 10(1), pages 1-2, December.
    5. Zhong Yao & Farzaneh Aboualizadeh & Jason Kroll & Indira Akula & Jamie Snider & Anna Lyakisheva & Priscilla Tang & Max Kotlyar & Igor Jurisica & Mike Boxem & Igor Stagljar, 2020. "Split Intein-Mediated Protein Ligation for detecting protein-protein interactions and their inhibition," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    6. Filipe Pinto & Ella Lucille Thornton & Baojun Wang, 2020. "An expanded library of orthogonal split inteins enables modular multi-peptide assemblies," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    7. Elizabeth J. Culp & Nicholas Waglechner & Wenliang Wang & Aline A. Fiebig-Comyn & Yen-Pang Hsu & Kalinka Koteva & David Sychantha & Brian K. Coombes & Michael S. Nieuwenhze & Yves V. Brun & Gerard D. , 2020. "Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling," Nature, Nature, vol. 578(7796), pages 582-587, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hengqian Ren & Shravan R. Dommaraju & Chunshuai Huang & Haiyang Cui & Yuwei Pan & Marko Nesic & Lingyang Zhu & David Sarlah & Douglas A. Mitchell & Huimin Zhao, 2023. "Genome mining unveils a class of ribosomal peptides with two amino termini," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannah McClymont & Wenbiao Hu, 2021. "Weather Variability and COVID-19 Transmission: A Review of Recent Research," IJERPH, MDPI, vol. 18(2), pages 1-19, January.
    2. Ioannis Kontoyiannis & Lambros Mertzanis & Athina Panotopoulou & Ioannis Papageorgiou & Maria Skoularidou, 2022. "Bayesian context trees: Modelling and exact inference for discrete time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1287-1323, September.
    3. Susan K. Vester & Rolle Rahikainen & Irsyad N. A. Khairil Anuar & Rory A. Hills & Tiong Kit Tan & Mark Howarth, 2022. "SpySwitch enables pH- or heat-responsive capture and release for plug-and-display nanoassembly," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Nikhil Kumar Tulsian & Raghuvamsi Venkata Palur & Xinlei Qian & Yue Gu & Bhuvaneshwari D/O Shunmuganathan & Firdaus Samsudin & Yee Hwa Wong & Jianqing Lin & Kiren Purushotorman & Mary McQueen Kozma & , 2023. "Defining neutralization and allostery by antibodies against COVID-19 variants," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    5. Mathias H. Hansen & Martina Adamek & Dumitrita Iftime & Daniel Petras & Frauke Schuseil & Stephanie Grond & Evi Stegmann & Max J. Cryle & Nadine Ziemert, 2023. "Resurrecting ancestral antibiotics: unveiling the origins of modern lipid II targeting glycopeptides," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Jing Wang & Yuan-fei Pan & Li-fen Yang & Wei-hong Yang & Kexin Lv & Chu-ming Luo & Juan Wang & Guo-peng Kuang & Wei-chen Wu & Qin-yu Gou & Gen-yang Xin & Bo Li & Huan-le Luo & Shoudeng Chen & Yue-long, 2023. "Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Joseph Dodd-o & Abhishek Roy & Zain Siddiqui & Roya Jafari & Francesco Coppola & Santhamani Ramasamy & Afsal Kolloli & Dilip Kumar & Soni Kaundal & Boyang Zhao & Ranjeet Kumar & Alicia S. Robang & Jef, 2024. "Antiviral fibrils of self-assembled peptides with tunable compositions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Irena Cosic & Drasko Cosic & Ivan Loncarevic, 2021. "Analysis of UK and South African Strains of SARS-CoV-2 Using Resonant Recognition Model," International Journal of Sciences, Office ijSciences, vol. 10(03), pages 19-25, March.
    9. Cedric C. S. Tan & Jahcub Trew & Thomas P. Peacock & Kai Yi Mok & Charlie Hart & Kelvin Lau & Dongchun Ni & C. David L. Orme & Emma Ransome & William D. Pearse & Christopher M. Coleman & Dalan Bailey , 2023. "Genomic screening of 16 UK native bat species through conservationist networks uncovers coronaviruses with zoonotic potential," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Kuan-Ying A. Huang & Xiaorui Chen & Arpita Mohapatra & Hong Thuy Vy Nguyen & Lisa Schimanski & Tiong Kit Tan & Pramila Rijal & Susan K. Vester & Rory A. Hills & Mark Howarth & Jennifer R. Keeffe & Ale, 2023. "Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Christopher C. Azubuike & Fay Couceiro & Samuel C. Robson & Maya Z. Piccinni & Joy E. M. Watts & John B. Williams & Anastasia J. Callaghan & Thomas P. Howard, 2022. "Developing Biosensors for SARS-CoV-2 Wastewater-Based Epidemiology: A Systematic Review of Trends, Limitations and Future Perspectives," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    12. Tomokazu Tamura & Jumpei Ito & Keiya Uriu & Jiri Zahradnik & Izumi Kida & Yuki Anraku & Hesham Nasser & Maya Shofa & Yoshitaka Oda & Spyros Lytras & Naganori Nao & Yukari Itakura & Sayaka Deguchi & Ri, 2023. "Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Weiwei Ji & Qi Peng & Xueqiong Fang & Zehou Li & Yaxin Li & Cunfa Xu & Shuqing Zhao & Jizong Li & Rong Chen & Guoxiang Mo & Zhanyong Wei & Ying Xu & Bin Li & Shuijun Zhang, 2022. "Structures of a deltacoronavirus spike protein bound to porcine and human receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. James Brett Case & Samantha Mackin & John M. Errico & Zhenlu Chong & Emily A. Madden & Bradley Whitener & Barbara Guarino & Michael A. Schmid & Kim Rosenthal & Kuishu Ren & Ha V. Dang & Gyorgy Snell &, 2022. "Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Sun Jin Kim & Zhong Yao & Morgan C. Marsh & Debra M. Eckert & Michael S. Kay & Anna Lyakisheva & Maria Pasic & Aiyush Bansal & Chaim Birnboim & Prabhat Jha & Yannick Galipeau & Marc-André Langlois & J, 2022. "Homogeneous surrogate virus neutralization assay to rapidly assess neutralization activity of anti-SARS-CoV-2 antibodies," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Saya Moriyama & Yuki Anraku & Shunta Taminishi & Yu Adachi & Daisuke Kuroda & Shunsuke Kita & Yusuke Higuchi & Yuhei Kirita & Ryutaro Kotaki & Keisuke Tonouchi & Kohei Yumoto & Tateki Suzuki & Taiyou , 2023. "Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Mai Komori & Takuto Nogimori & Amber L. Morey & Takashi Sekida & Keiko Ishimoto & Matthew R. Hassett & Yuji Masuta & Hirotaka Ode & Tomokazu Tamura & Rigel Suzuki & Jeff Alexander & Yasutoshi Kido & K, 2023. "saRNA vaccine expressing membrane-anchored RBD elicits broad and durable immunity against SARS-CoV-2 variants of concern," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Peter Radvak & Hyung-Joon Kwon & Martina Kosikova & Uriel Ortega-Rodriguez & Ruoxuan Xiang & Je-Nie Phue & Rong-Fong Shen & James Rozzelle & Neeraj Kapoor & Taylor Rabara & Jeff Fairman & Hang Xie, 2021. "SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    19. Xiaoming Hu & Shuang Wang & Shaotong Fu & Meng Qin & Chengliang Lyu & Zhaowen Ding & Yan Wang & Yishu Wang & Dongshu Wang & Li Zhu & Tao Jiang & Jing Sun & Hui Ding & Jie Wu & Lingqian Chang & Yimin C, 2023. "Intranasal mask for protecting the respiratory tract against viral aerosols," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Katherine U. Gaynor & Marina Vaysburd & Maximilian A. J. Harman & Anna Albecka & Phillip Jeffrey & Paul Beswick & Guido Papa & Liuhong Chen & Donna Mallery & Brian McGuinness & Katerine Rietschoten & , 2023. "Multivalent bicyclic peptides are an effective antiviral modality that can potently inhibit SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26350-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.