IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26211-0.html
   My bibliography  Save this article

Human cell based directed evolution of adenine base editors with improved efficiency

Author

Listed:
  • Junhao Fu

    (Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry)

  • Qing Li

    (Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences)

  • Xiaoyu Liu

    (Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry)

  • Tianxiang Tu

    (Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry)

  • Xiujuan Lv

    (Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry)

  • Xidi Yin

    (Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences)

  • Jineng Lv

    (Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry)

  • Zongming Song

    (Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry
    Henan Eye Hospital, Henan Eye Institute, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University and People’s Hospital of Henan University)

  • Jia Qu

    (Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry)

  • Jinwei Zhang

    (National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health)

  • Jinsong Li

    (Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences)

  • Feng Gu

    (Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry)

Abstract

Adenine base editors (ABE) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. However, the low activity of ABE at certain sites remains a major bottleneck that precludes efficacious applications. Here, to address it, we develop a directional screening system in human cells to evolve the deaminase component of the ABE, and identify three high-activity NG-ABEmax variants: NG-ABEmax-SGK (R101S/D139G/E140K), NG-ABEmax-R (Q154R) and NG-ABEmax-K (N127K). With further engineering, we create a consolidated variant [NG-ABEmax-KR (N127K/Q154R)] which exhibit superior editing activity both in human cells and in mouse disease models, compared to the original NG-ABEmax. We also find that NG-ABEmax-KR efficiently introduce natural mutations in gamma globin gene promoters with more than four-fold increase in editing activity. This work provides a broadly applicable, rapidly deployable platform to directionally screen and evolve user-specified traits in base editors that extend beyond augmented editing activity.

Suggested Citation

  • Junhao Fu & Qing Li & Xiaoyu Liu & Tianxiang Tu & Xiujuan Lv & Xidi Yin & Jineng Lv & Zongming Song & Jia Qu & Jinwei Zhang & Jinsong Li & Feng Gu, 2021. "Human cell based directed evolution of adenine base editors with improved efficiency," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26211-0
    DOI: 10.1038/s41467-021-26211-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26211-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26211-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    2. Sukanya Iyer & Sneha Suresh & Dongsheng Guo & Katelyn Daman & Jennifer C. J. Chen & Pengpeng Liu & Marina Zieger & Kevin Luk & Benjamin P. Roscoe & Christian Mueller & Oliver D. King & Charles P. Emer, 2019. "Precise therapeutic gene correction by a simple nuclease-induced double-stranded break," Nature, Nature, vol. 568(7753), pages 561-565, April.
    3. Zhen Liu & Zongyang Lu & Guang Yang & Shisheng Huang & Guanglei Li & Songjie Feng & Yajing Liu & Jianan Li & Wenxia Yu & Yu Zhang & Jia Chen & Qiang Sun & Xingxu Huang, 2018. "Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Julian Grünewald & Ronghao Zhou & Sara P. Garcia & Sowmya Iyer & Caleb A. Lareau & Martin J. Aryee & J. Keith Joung, 2019. "Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors," Nature, Nature, vol. 569(7756), pages 433-437, May.
    5. Changyang Zhou & Yidi Sun & Rui Yan & Yajing Liu & Erwei Zuo & Chan Gu & Linxiao Han & Yu Wei & Xinde Hu & Rong Zeng & Yixue Li & Haibo Zhou & Fan Guo & Hui Yang, 2019. "Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis," Nature, Nature, vol. 571(7764), pages 275-278, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Antoniou & Giulia Hardouin & Pierre Martinucci & Giacomo Frati & Tristan Felix & Anne Chalumeau & Letizia Fontana & Jeanne Martin & Cecile Masson & Megane Brusson & Giulia Maule & Marion Ro, 2022. "Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression," Nature Communications, Nature, vol. 13(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Chengdong Zhang & Yuan Yang & Tao Qi & Yuening Zhang & Linghui Hou & Jingjing Wei & Jingcheng Yang & Leming Shi & Sang-Ging Ong & Hongyan Wang & Hui Wang & Bo Yu & Yongming Wang, 2023. "Prediction of base editor off-targets by deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Qichen Yuan & Xue Gao, 2022. "Multiplex base- and prime-editing with drive-and-process CRISPR arrays," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Niannian Xue & Xu Liu & Dan Zhang & Youming Wu & Yi Zhong & Jinxin Wang & Wenjing Fan & Haixia Jiang & Biyun Zhu & Xiyu Ge & Rachel V. L. Gonzalez & Liang Chen & Shun Zhang & Peilu She & Zhilin Zhong , 2023. "Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Mu Li & Aaron Zhong & Youjun Wu & Mega Sidharta & Michael Beaury & Xiaolan Zhao & Lorenz Studer & Ting Zhou, 2022. "Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jianhang Yin & Rusen Lu & Changchang Xin & Yuhong Wang & Xinyu Ling & Dong Li & Weiwei Zhang & Mengzhu Liu & Wutao Xie & Lingyun Kong & Wen Si & Ping Wei & Bingbing Xiao & Hsiang-Ying Lee & Tao Liu & , 2022. "Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Shuqian Zhang & Bo Yuan & Jixin Cao & Liting Song & Jinlong Chen & Jiayi Qiu & Zilong Qiu & Xing-Ming Zhao & Jingqi Chen & Tian-Lin Cheng, 2023. "TadA orthologs enable both cytosine and adenine editing of base editors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Nana Yan & Hu Feng & Yongsen Sun & Ying Xin & Haihang Zhang & Hongjiang Lu & Jitan Zheng & Chenfei He & Zhenrui Zuo & Tanglong Yuan & Nana Li & Long Xie & Wu Wei & Yidi Sun & Erwei Zuo, 2023. "Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Guiquan Zhang & Yao Liu & Shisheng Huang & Shiyuan Qu & Daolin Cheng & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Xingxu Huang & Jianghuai Liu, 2022. "Enhancement of prime editing via xrRNA motif-joined pegRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Ambrocio Sanchez & Pedro Ortega & Ramin Sakhtemani & Lavanya Manjunath & Sunwoo Oh & Elodie Bournique & Alexandrea Becker & Kyumin Kim & Cameron Durfee & Nuri Alpay Temiz & Xiaojiang S. Chen & Reuben , 2024. "Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Fang Liang & Yu Zhang & Lin Li & Yexin Yang & Ji-Feng Fei & Yanmei Liu & Wei Qin, 2022. "SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    14. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Feiyu Zhao & Tao Zhang & Xiaodi Sun & Xiyun Zhang & Letong Chen & Hejun Wang & Jinze Li & Peng Fan & Liangxue Lai & Tingting Sui & Zhanjun Li, 2023. "A strategy for Cas13 miniaturization based on the structure and AlphaFold," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Yang Xue & Lijun Shang, 2022. "Governance of Heritable Human Gene Editing World-Wide and Beyond," IJERPH, MDPI, vol. 19(11), pages 1-17, May.
    17. Qiao Liu & Di He & Lei Xie, 2019. "Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-22, October.
    18. Kun Jia & Yan-ru Cui & Shisheng Huang & Peihong Yu & Zhengxing Lian & Peixiang Ma & Jia Liu, 2022. "Phage peptides mediate precision base editing with focused targeting window," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Zyontz, Samantha & Pomeroy-Carter, Cassidy, 2021. "Mapping of the research, innovation and diffusion activity of CRISPR across countries," Studien zum deutschen Innovationssystem 12-2021, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    20. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26211-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.