IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24447-4.html
   My bibliography  Save this article

Lure-and-kill macrophage nanoparticles alleviate the severity of experimental acute pancreatitis

Author

Listed:
  • Qiangzhe Zhang

    (University of California San Diego)

  • Julia Zhou

    (University of California San Diego)

  • Jiarong Zhou

    (University of California San Diego)

  • Ronnie H. Fang

    (University of California San Diego)

  • Weiwei Gao

    (University of California San Diego)

  • Liangfang Zhang

    (University of California San Diego)

Abstract

Acute pancreatitis is a disease associated with suffering and high lethality. Although the disease mechanism is unclear, phospholipase A2 (PLA2) produced by pancreatic acinar cells is a known pathogenic trigger. Here, we show macrophage membrane-coated nanoparticles with a built-in ‘lure and kill’ mechanism (denoted ‘MΦ-NP(L&K)’) for the treatment of acute pancreatitis. MΦ-NP(L&K) are made with polymeric cores wrapped with natural macrophage membrane doped with melittin and MJ-33. The membrane incorporated melittin and MJ-33 function as a PLA2 attractant and a PLA2 inhibitor, respectively. These molecules, together with membrane lipids, work synergistically to lure and kill PLA2 enzymes. These nanoparticles can neutralize PLA2 activity in the sera of mice and human patients with acute pancreatitis in a dose-dependent manner and suppress PLA2-induced inflammatory response accordingly. In mouse models of both mild and severe acute pancreatitis, MΦ-NP(L&K) confer effective protection against disease-associated inflammation, tissue damage and lethality. Overall, this biomimetic nanotherapeutic strategy offers an anti-PLA2 treatment option that might be applicable to a wide range of PLA2-mediated inflammatory disorders.

Suggested Citation

  • Qiangzhe Zhang & Julia Zhou & Jiarong Zhou & Ronnie H. Fang & Weiwei Gao & Liangfang Zhang, 2021. "Lure-and-kill macrophage nanoparticles alleviate the severity of experimental acute pancreatitis," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24447-4
    DOI: 10.1038/s41467-021-24447-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24447-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24447-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxin Guo & Shao-Zhe Wang & Xinping Zhang & Hao-Ran Jia & Ya-Xuan Zhu & Xiaodong Zhang & Ge Gao & Yao-Wen Jiang & Chengcheng Li & Xiaokai Chen & Shun-Yu Wu & Yi Liu & Fu-Gen Wu, 2022. "In situ generation of micrometer-sized tumor cell-derived vesicles as autologous cancer vaccines for boosting systemic immune responses," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Cheng Gao & Qingfu Wang & Yuanfu Ding & Cheryl H. T. Kwong & Jinwei Liu & Beibei Xie & Jianwen Wei & Simon M. Y. Lee & Greta S. P. Mok & Ruibing Wang, 2024. "Targeted therapies of inflammatory diseases with intracellularly gelated macrophages in mice and rats," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24447-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.