IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23647-2.html
   My bibliography  Save this article

Robust adaptive optics for localization microscopy deep in complex tissue

Author

Listed:
  • Marijn E. Siemons

    (Utrecht University)

  • Naomi A. K. Hanemaaijer

    (Utrecht University
    Royal Netherlands Academy for Arts and Sciences (KNAW))

  • Maarten H. P. Kole

    (Utrecht University
    Royal Netherlands Academy for Arts and Sciences (KNAW))

  • Lukas C. Kapitein

    (Utrecht University)

Abstract

Single-Molecule Localization Microscopy (SMLM) provides the ability to determine molecular organizations in cells at nanoscale resolution, but in complex biological tissues, where sample-induced aberrations hamper detection and localization, its application remains a challenge. Various adaptive optics approaches have been proposed to overcome these issues, but the exact performance of these methods has not been consistently established. Here we systematically compare the performance of existing methods using both simulations and experiments with standardized samples and find that they often provide limited correction or even introduce additional errors. Careful analysis of the reasons that underlie this limited success enabled us to develop an improved method, termed REALM (Robust and Effective Adaptive Optics in Localization Microscopy), which corrects aberrations of up to 1 rad RMS using 297 frames of blinking molecules to improve single-molecule localization. After its quantitative validation, we demonstrate that REALM enables to resolve the periodic organization of cytoskeletal spectrin of the axon initial segment even at 50 μm depth in brain tissue.

Suggested Citation

  • Marijn E. Siemons & Naomi A. K. Hanemaaijer & Maarten H. P. Kole & Lukas C. Kapitein, 2021. "Robust adaptive optics for localization microscopy deep in complex tissue," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23647-2
    DOI: 10.1038/s41467-021-23647-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23647-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23647-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanghyeon Park & Yonghyeon Jo & Minsu Kang & Jin Hee Hong & Sangyoon Ko & Suhyun Kim & Sangjun Park & Hae Chul Park & Sang-Hee Shim & Wonshik Choi, 2023. "Label-free adaptive optics single-molecule localization microscopy for whole zebrafish," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23647-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.