IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22848-z.html
   My bibliography  Save this article

A network linking scene perception and spatial memory systems in posterior cerebral cortex

Author

Listed:
  • Adam Steel

    (Dartmouth College)

  • Madeleine M. Billings

    (Dartmouth College)

  • Edward H. Silson

    (University of Edinburgh)

  • Caroline E. Robertson

    (Dartmouth College)

Abstract

The neural systems supporting scene-perception and spatial-memory systems of the human brain are well-described. But how do these neural systems interact? Here, using fine-grained individual-subject fMRI, we report three cortical areas of the human brain, each lying immediately anterior to a region of the scene perception network in posterior cerebral cortex, that selectively activate when recalling familiar real-world locations. Despite their close proximity to the scene-perception areas, network analyses show that these regions constitute a distinct functional network that interfaces with spatial memory systems during naturalistic scene understanding. These “place-memory areas” offer a new framework for understanding how the brain implements memory-guided visual behaviors, including navigation.

Suggested Citation

  • Adam Steel & Madeleine M. Billings & Edward H. Silson & Caroline E. Robertson, 2021. "A network linking scene perception and spatial memory systems in posterior cerebral cortex," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22848-z
    DOI: 10.1038/s41467-021-22848-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22848-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22848-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilma A. Bainbridge & Chris I. Baker, 2022. "Multidimensional memory topography in the medial parietal cortex identified from neuroimaging of thousands of daily memory videos," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Serra E. Favila & Brice A. Kuhl & Jonathan Winawer, 2022. "Perception and memory have distinct spatial tuning properties in human visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22848-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.