IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20527-z.html
   My bibliography  Save this article

circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity

Author

Listed:
  • Botai Li

    (Shanghai Jiao Tong University School of Biomedical Engineering)

  • Lili Zhu

    (Shanghai Jiao Tong University School of Biomedical Engineering)

  • Chunlai Lu

    (Fudan University)

  • Cun Wang

    (Shanghai Jiao Tong University School of Medicine)

  • Hui Wang

    (Shanghai Jiao Tong University School of Medicine)

  • Haojie Jin

    (Shanghai Jiao Tong University School of Medicine)

  • Xuhui Ma

    (Shanghai Jiao Tong University School of Medicine)

  • Zhuoan Cheng

    (Shanghai Jiao Tong University School of Biomedical Engineering)

  • Chengtao Yu

    (Shanghai Jiao Tong University School of Biomedical Engineering)

  • Siying Wang

    (Shanghai Jiao Tong University School of Medicine)

  • Qiaozhu Zuo

    (Shanghai Jiao Tong University School of Medicine)

  • Yangyang Zhou

    (Shanghai Jiao Tong University School of Medicine)

  • Jun Wang

    (Shanghai Jiao Tong University School of Medicine)

  • Chen Yang

    (Shanghai Jiao Tong University School of Medicine)

  • Yuanyuan Lv

    (Shanghai Jiao Tong University School of Medicine)

  • Liyan Jiang

    (Shanghai Jiao Tong University)

  • Wenxin Qin

    (Shanghai Jiao Tong University School of Biomedical Engineering
    Shanghai Jiao Tong University School of Medicine)

Abstract

Circular RNAs (circRNA) are a class of covalently closed single-stranded RNAs that have been implicated in cancer progression. Here we identify circNDUFB2 to be downregulated in non-small cell lung cancer (NSCLC) tissues, and to negatively correlate with NSCLC malignant features. Elevated circNDUFB2 inhibits growth and metastasis of NSCLC cells. Mechanistically, circNDUFB2 functions as a scaffold to enhance the interaction between TRIM25 and IGF2BPs, a positive regulator of tumor progression and metastasis. This TRIM25/circNDUFB2/IGF2BPs ternary complex facilitates ubiquitination and degradation of IGF2BPs, with this effect enhanced by N6-methyladenosine (m6A) modification of circNDUFB2. Moreover, circNDUFB2 is also recognized by RIG-I to activate RIG-I-MAVS signaling cascades and recruit immune cells into the tumor microenvironment (TME). Our data thus provide evidences that circNDUFB2 participates in the degradation of IGF2BPs and activation of anti-tumor immunity during NSCLC progression via the modulation of both protein ubiquitination and degradation, as well as cellular immune responses.

Suggested Citation

  • Botai Li & Lili Zhu & Chunlai Lu & Cun Wang & Hui Wang & Haojie Jin & Xuhui Ma & Zhuoan Cheng & Chengtao Yu & Siying Wang & Qiaozhu Zuo & Yangyang Zhou & Jun Wang & Chen Yang & Yuanyuan Lv & Liyan Jia, 2021. "circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20527-z
    DOI: 10.1038/s41467-020-20527-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20527-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20527-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Gong & Jinjin Zhu & Junxin Chen & Fan Feng & Haitao Zhang & Zheyuan Zhang & Chenxin Song & Kaiyu Liang & Shuhui Yang & Shunwu Fan & Xiangqian Fang & Shuying Shen, 2023. "CircRREB1 mediates lipid metabolism related senescent phenotypes in chondrocytes through FASN post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Chi Zhou & Wenxin Li & Zhenxing Liang & Xianrui Wu & Sijing Cheng & Jianhong Peng & Kaixuan Zeng & Weihao Li & Ping Lan & Xin Yang & Li Xiong & Ziwei Zeng & Xiaobin Zheng & Liang Huang & Wenhua Fan & , 2024. "Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Bin Li & Wen Xi & Ying Bai & Xue Liu & Yuan Zhang & Lu Li & Liang Bian & Chenchen Liu & Ying Tang & Ling Shen & Li Yang & Xiaochun Gu & Jian Xie & Zhongqiu Zhou & Yu Wang & Xiaoyu Yu & Jianhong Wang &, 2023. "FTO-dependent m6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Wenjuan Zhang & Bowei Zhou & Xiao Yang & Jin Zhao & Jingjuan Hu & Yuqi Ding & Shuteng Zhan & Yifeng Yang & Jun Chen & Fu Zhang & Bingcheng Zhao & Fan Deng & Zebin Lin & Qishun Sun & Fangling Zhang & Z, 2023. "Exosomal circEZH2_005, an intestinal injury biomarker, alleviates intestinal ischemia/reperfusion injury by mediating Gprc5a signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Peng Wang & Zhitao Huang & Yili Peng & Hongwei Li & Tong Lin & Yingyu Zhao & Zheng Hu & Zhanmei Zhou & Weijie Zhou & Youhua Liu & Fan Fan Hou, 2022. "Circular RNA circBNC2 inhibits epithelial cell G2-M arrest to prevent fibrotic maladaptive repair," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20527-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.