IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20330-w.html
   My bibliography  Save this article

Single ion qubit with estimated coherence time exceeding one hour

Author

Listed:
  • Pengfei Wang

    (Tsinghua University)

  • Chun-Yang Luan

    (Tsinghua University)

  • Mu Qiao

    (Tsinghua University)

  • Mark Um

    (Tsinghua University)

  • Junhua Zhang

    (Tsinghua University
    Southern University of Science and Technology)

  • Ye Wang

    (Tsinghua University
    Duke University)

  • Xiao Yuan

    (Stanford University
    Department of Computer Science, Peking University)

  • Mile Gu

    (National University of Singapore
    Nanyang Technological University
    Nanyang Technological University)

  • Jingning Zhang

    (Beijing Academy of Quantum Information Sciences)

  • Kihwan Kim

    (Tsinghua University)

Abstract

Realizing a long coherence time quantum memory is a major challenge of current quantum technology. Until now, the longest coherence-time of a single qubit was reported as 660 s in a single 171Yb+ ion-qubit through the technical developments of sympathetic cooling and dynamical decoupling pulses, which addressed heating-induced detection inefficiency and magnetic field fluctuations. However, it was not clear what prohibited further enhancement. Here, we identify and suppress the limiting factors, which are the remaining magnetic-field fluctuations, frequency instability and leakage of the microwave reference-oscillator. Then, we observe the coherence time of around 5500 s for the 171Yb+ ion-qubit, which is the time constant of the exponential decay fit from the measurements up to 960 s. We also systematically study the decoherence process of the quantum memory by using quantum process tomography and analyze the results by applying recently developed resource theories of quantum memory and coherence. Our experimental demonstration will accelerate practical applications of quantum memories for various quantum information processing, especially in the noisy-intermediate-scale quantum regime.

Suggested Citation

  • Pengfei Wang & Chun-Yang Luan & Mu Qiao & Mark Um & Junhua Zhang & Ye Wang & Xiao Yuan & Mile Gu & Jingning Zhang & Kihwan Kim, 2021. "Single ion qubit with estimated coherence time exceeding one hour," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20330-w
    DOI: 10.1038/s41467-020-20330-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20330-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20330-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M.-L. Cai & Y.-K. Wu & Q.-X. Mei & W.-D. Zhao & Y. Jiang & L. Yao & L. He & Z.-C. Zhou & L.-M. Duan, 2022. "Observation of supersymmetry and its spontaneous breaking in a trapped ion quantum simulator," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. M. Akhtar & F. Bonus & F. R. Lebrun-Gallagher & N. I. Johnson & M. Siegele-Brown & S. Hong & S. J. Hile & S. A. Kulmiya & S. Weidt & W. K. Hensinger, 2023. "A high-fidelity quantum matter-link between ion-trap microchip modules," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20330-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.