IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19662-4.html
   My bibliography  Save this article

Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site

Author

Listed:
  • Jaeyong Lee

    (The University of British Columbia
    Simon Fraser University)

  • Liam J. Worrall

    (The University of British Columbia)

  • Marija Vuckovic

    (The University of British Columbia)

  • Federico I. Rosell

    (The University of British Columbia)

  • Francesco Gentile

    (The University of British Columbia)

  • Anh-Tien Ton

    (The University of British Columbia)

  • Nathanael A. Caveney

    (The University of British Columbia)

  • Fuqiang Ban

    (The University of British Columbia)

  • Artem Cherkasov

    (The University of British Columbia)

  • Mark Paetzel

    (Simon Fraser University)

  • Natalie C. J. Strynadka

    (The University of British Columbia)

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes the disease COVID-19, produces replicase polyproteins 1a and 1ab that contain, respectively, 11 or 16 nonstructural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for subsequent viral assembly and maturation. We have determined X-ray crystallographic structures of this cysteine protease in its wild-type free active site state at 1.8 Å resolution, in its acyl-enzyme intermediate state with the native C-terminal autocleavage sequence at 1.95 Å resolution and in its product bound state at 2.0 Å resolution by employing an active site mutation (C145A). We characterize the stereochemical features of the acyl-enzyme intermediate including critical hydrogen bonding distances underlying catalysis in the Cys/His dyad and oxyanion hole. We also identify a highly ordered water molecule in a position compatible for a role as the deacylating nucleophile in the catalytic mechanism and characterize the binding groove conformational changes and dimerization interface that occur upon formation of the acyl-enzyme. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for future antiviral therapeutic development including revised molecular docking strategies based on Mpro inhibition.

Suggested Citation

  • Jaeyong Lee & Liam J. Worrall & Marija Vuckovic & Federico I. Rosell & Francesco Gentile & Anh-Tien Ton & Nathanael A. Caveney & Fuqiang Ban & Artem Cherkasov & Mark Paetzel & Natalie C. J. Strynadka, 2020. "Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19662-4
    DOI: 10.1038/s41467-020-19662-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19662-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19662-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Mikhail A. Hameedi & Erica T. Prates & Michael R. Garvin & Irimpan I. Mathews & B. Kirtley Amos & Omar Demerdash & Mark Bechthold & Mamta Iyer & Simin Rahighi & Daniel W. Kneller & Andrey Kovalevsky &, 2022. "Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Norman Tran & Sathish Dasari & Sarah A. E. Barwell & Matthew J. McLeod & Subha Kalyaanamoorthy & Todd Holyoak & Aravindhan Ganesan, 2023. "The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Lisa-Marie Funk & Gereon Poschmann & Fabian Rabe von Pappenheim & Ashwin Chari & Kim M. Stegmann & Antje Dickmanns & Marie Wensien & Nora Eulig & Elham Paknia & Gabi Heyne & Elke Penka & Arwen R. Pear, 2024. "Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Filip Mihalič & Caroline Benz & Eszter Kassa & Richard Lindqvist & Leandro Simonetti & Raviteja Inturi & Hanna Aronsson & Eva Andersson & Celestine N. Chi & Norman E. Davey & Anna K. Överby & Per Jemt, 2023. "Identification of motif-based interactions between SARS-CoV-2 protein domains and human peptide ligands pinpoint antiviral targets," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Gabriela Dias Noske & Yun Song & Rafaela Sachetto Fernandes & Rod Chalk & Haitem Elmassoudi & Lizbé Koekemoer & C. David Owen & Tarick J. El-Baba & Carol V. Robinson & Glaucius Oliva & Andre Schutzer , 2023. "An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19662-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.