IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18990-9.html
   My bibliography  Save this article

Exploring and applying the substrate promiscuity of a C-glycosyltransferase in the chemo-enzymatic synthesis of bioactive C-glycosides

Author

Listed:
  • Kebo Xie

    (State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Xiaolin Zhang

    (State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Songyang Sui

    (State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Fei Ye

    (State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College)

  • Jungui Dai

    (State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College)

Abstract

Bioactive natural C-glycosides are rare and chemical C-glycosylation faces challenges while enzymatic C-glycosylation catalyzed by C-glycosyltransferases provides an alternative way. However, only a small number of C-glycosyltransferases have been found, and most of the discovered C-glycosyltransferases prefer to glycosylate phenols with an acyl side chain. Here, a promiscuous C-glycosyltransferase, AbCGT, which is capable of C-glycosylating scaffolds lacking acyl groups, is identified from Aloe barbadensis. Based on the substrate promiscuity of AbCGT, 16 C-glycosides with inhibitory activity against sodium-dependent glucose transporters 2 are chemo-enzymatically synthesized. The C-glycoside 46a shows hypoglycemic activity in diabetic mice and is biosynthesized with a cumulative yield on the 3.95 g L‒1 scale. In addition, the key residues involved in the catalytic selectivity of AbCGT are explored. These findings suggest that AbCGT is a powerful tool in the synthesis of lead compounds for drug discovery and an example for engineering the catalytic selectivity of C-glycosyltransferases.

Suggested Citation

  • Kebo Xie & Xiaolin Zhang & Songyang Sui & Fei Ye & Jungui Dai, 2020. "Exploring and applying the substrate promiscuity of a C-glycosyltransferase in the chemo-enzymatic synthesis of bioactive C-glycosides," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18990-9
    DOI: 10.1038/s41467-020-18990-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18990-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18990-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18990-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.