IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17690-8.html
   My bibliography  Save this article

Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis

Author

Listed:
  • Ming He

    (Tsinghua University)

  • Chunsong Li

    (Tsinghua University)

  • Haochen Zhang

    (Tsinghua University)

  • Xiaoxia Chang

    (University of Delaware)

  • Jingguang G. Chen

    (Columbia University)

  • William A. Goddard

    (California Institute of Technology)

  • Mu-jeng Cheng

    (National Cheng Kung University)

  • Bingjun Xu

    (University of Delaware)

  • Qi Lu

    (Tsinghua University)

Abstract

Harnessing renewable electricity to drive the electrochemical reduction of CO2 is being intensely studied for sustainable fuel production and as a means for energy storage. Copper is the only monometallic electrocatalyst capable of converting CO2 to value-added products, e.g., hydrocarbons and oxygenates, but suffers from poor selectivity and mediocre activity. Multiple oxidative treatments have shown improvements in the performance of copper catalysts. However, the fundamental underpinning for such enhancement remains controversial. Here, we combine reactivity, in-situ surface-enhanced Raman spectroscopy, and computational investigations to demonstrate that the presence of surface hydroxyl species by co-electrolysis of CO2 with low concentrations of O2 can dramatically enhance the activity of copper catalyzed CO2 electroreduction. Our results indicate that co-electrolysis of CO2 with an oxidant is a promising strategy to introduce catalytically active species in electrocatalysis.

Suggested Citation

  • Ming He & Chunsong Li & Haochen Zhang & Xiaoxia Chang & Jingguang G. Chen & William A. Goddard & Mu-jeng Cheng & Bingjun Xu & Qi Lu, 2020. "Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17690-8
    DOI: 10.1038/s41467-020-17690-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17690-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17690-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng Wang & Bingqing Wang & Jiguang Zhang & Shibo Xi & Ning Ling & Ziyu Mi & Qin Yang & Mingsheng Zhang & Wan Ru Leow & Jia Zhang & Yanwei Lum, 2024. "Acidic media enables oxygen-tolerant electrosynthesis of multicarbon products from simulated flue gas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Weili Zhang & Yang Lu & Lei Wan & Pan Zhou & Yingchun Xia & Shuaishuai Yan & Xiaoxia Chen & Hangyu Zhou & Hao Dong & Kai Liu, 2022. "Engineering a passivating electric double layer for high performance lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17690-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.