Author
Listed:
- Kevin Roux
(Institute of Physics, EPFL)
- Hideki Konishi
(Institute of Physics, EPFL)
- Victor Helson
(Institute of Physics, EPFL)
- Jean-Philippe Brantut
(Institute of Physics, EPFL)
Abstract
Strong quantum correlations in matter are responsible for some of the most extraordinary properties of materials, from magnetism to high-temperature superconductivity, but their integration in quantum devices requires a strong, coherent coupling with photons, which still represents a formidable technical challenge in solid state systems. In cavity quantum electrodynamics, quantum gases such as Bose-Einstein condensates or lattice gases have been strongly coupled with light. However, neither Fermionic quantum matter, comparable to electrons in solids, nor atomic systems with controlled interactions, have thus far been strongly coupled with photons. Here we report on the strong coupling of a quantum-degenerate unitary Fermi gas with light in a high finesse cavity. We map out the spectrum of the coupled system and observe well resolved dressed states, resulting from the strong coupling of cavity photons with each spin component of the gas. We investigate spin-balanced and spin-polarized gases and find quantitative agreement with ab initio calculation describing light-matter interaction. Our system offers complete and simultaneous control of atom-atom and atom-photon interactions in the quantum degenerate regime, opening a wide range of perspectives for quantum simulation.
Suggested Citation
Kevin Roux & Hideki Konishi & Victor Helson & Jean-Philippe Brantut, 2020.
"Strongly correlated Fermions strongly coupled to light,"
Nature Communications, Nature, vol. 11(1), pages 1-6, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16767-8
DOI: 10.1038/s41467-020-16767-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16767-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.