IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15932-3.html
   My bibliography  Save this article

Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants

Author

Listed:
  • Elodie Persyn

    (King’s College London)

  • Ken B. Hanscombe

    (King’s College London)

  • Joanna M. M. Howson

    (University of Cambridge
    Novo Nordisk Research Centre Oxford, Innovation Building, Old Road Campus, Roosevelt Drive)

  • Cathryn M. Lewis

    (King’s College London
    King’s College London)

  • Matthew Traylor

    (University of Cambridge
    Queen Mary University of London)

  • Hugh S. Markus

    (University of Cambridge)

Abstract

Cerebral small vessel disease is a major cause of stroke and dementia, but its genetic basis is incompletely understood. We perform a genetic study of three MRI markers of the disease in UK Biobank imaging data and other sources: white matter hyperintensities (N = 42,310), fractional anisotropy (N = 17,663) and mean diffusivity (N = 17,467). Our aim is to better understand the disease pathophysiology. Across the three traits, we identify 31 loci, of which 21 were previously unreported. We perform a transcriptome-wide association study to identify associations with gene expression in relevant tissues, identifying 66 associated genes across the three traits. This genetic study provides insights into the understanding of the biological mechanisms underlying small vessel disease.

Suggested Citation

  • Elodie Persyn & Ken B. Hanscombe & Joanna M. M. Howson & Cathryn M. Lewis & Matthew Traylor & Hugh S. Markus, 2020. "Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15932-3
    DOI: 10.1038/s41467-020-15932-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15932-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15932-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Chieh Fan & Robert Loughnan & Carolina Makowski & Diliana Pecheva & Chi-Hua Chen & Donald J. Hagler & Wesley K. Thompson & Nadine Parker & Dennis van der Meer & Oleksandr Frei & Ole A. Andreassen, 2022. "Multivariate genome-wide association study on tissue-sensitive diffusion metrics highlights pathways that shape the human brain," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Lingyan Chen & James E. Peters & Bram Prins & Elodie Persyn & Matthew Traylor & Praveen Surendran & Savita Karthikeyan & Ekaterina Yonova-Doing & Emanuele Angelantonio & David J. Roberts & Nicholas A., 2022. "Systematic Mendelian randomization using the human plasma proteome to discover potential therapeutic targets for stroke," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15932-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.