Author
Listed:
- S. X. Hu
(Laboratory for Laser Energetics, University of Rochester, 250 East River Road)
- V. V. Karasiev
(Laboratory for Laser Energetics, University of Rochester, 250 East River Road)
- V. Recoules
(CEA, DAM, DIF)
- P. M. Nilson
(Laboratory for Laser Energetics, University of Rochester, 250 East River Road)
- N. Brouwer
(CEA, DAM, DIF)
- M. Torrent
(CEA, DAM, DIF)
Abstract
Superdense plasmas widely exist in planetary interiors and astrophysical objects such as brown-dwarf cores and white dwarfs. How atoms behave under such extreme-density conditions is not yet well understood, even in single-species plasmas. Here, we apply thermal density functional theory to investigate the radiation spectra of superdense iron–zinc plasma mixtures at mass densities of ρ = 250 to 2000 g cm−3 and temperatures of kT = 50 to 100 eV, accessible by double-shell–target implosions. Our ab initio calculations reveal two extreme atomic-physics phenomena—firstly, an interspecies radiative transition; and, secondly, the breaking down of the dipole-selection rule for radiative transitions in isolated atoms. Our first-principles calculations predict that for superdense plasma mixtures, both interatomic radiative transitions and dipole-forbidden transitions can become comparable to the normal intra-atomic Kα-emission signal. These physics phenomena were not previously considered in detail for extreme high-density plasma mixtures at super-high energy densities.
Suggested Citation
S. X. Hu & V. V. Karasiev & V. Recoules & P. M. Nilson & N. Brouwer & M. Torrent, 2020.
"Interspecies radiative transition in warm and superdense plasma mixtures,"
Nature Communications, Nature, vol. 11(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15916-3
DOI: 10.1038/s41467-020-15916-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15916-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.