IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14555-y.html
   My bibliography  Save this article

Global resource potential of seasonal pumped hydropower storage for energy and water storage

Author

Listed:
  • Julian D. Hunt

    (International Institute of Applied Systems Analysis (IIASA))

  • Edward Byers

    (International Institute of Applied Systems Analysis (IIASA))

  • Yoshihide Wada

    (International Institute of Applied Systems Analysis (IIASA))

  • Simon Parkinson

    (International Institute of Applied Systems Analysis (IIASA)
    University of Victoria)

  • David E. H. J. Gernaat

    (Utrecht University
    PBL – Netherlands Environmental Assessment Agency)

  • Simon Langan

    (International Institute of Applied Systems Analysis (IIASA))

  • Detlef P. Vuuren

    (Utrecht University
    PBL – Netherlands Environmental Assessment Agency)

  • Keywan Riahi

    (International Institute of Applied Systems Analysis (IIASA))

Abstract

Seasonal mismatches between electricity supply and demand is increasing due to expanded use of wind, solar and hydropower resources, which in turn raises the interest on low-cost seasonal energy storage options. Seasonal pumped hydropower storage (SPHS) can provide long-term energy storage at a relatively low-cost and co-benefits in the form of freshwater storage capacity. We present the first estimate of the global assessment of SPHS potential, using a novel plant-siting methodology based on high-resolution topographical and hydrological data. Here we show that SPHS costs vary from 0.007 to 0.2 US$ m−1 of water stored, 1.8 to 50 US$ MWh−1 of energy stored and 370 to 600 US$ kW−1 of installed power generation. This potential is unevenly distributed with mountainous regions demonstrating significantly more potential. The estimated world energy storage capacity below a cost of 50 US$ MWh−1 is 17.3 PWh, approximately 79% of the world electricity consumption in 2017.

Suggested Citation

  • Julian D. Hunt & Edward Byers & Yoshihide Wada & Simon Parkinson & David E. H. J. Gernaat & Simon Langan & Detlef P. Vuuren & Keywan Riahi, 2020. "Global resource potential of seasonal pumped hydropower storage for energy and water storage," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14555-y
    DOI: 10.1038/s41467-020-14555-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14555-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14555-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    2. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Julian David Hunt & Behnam Zakeri & Jakub Jurasz & Wenxuan Tong & Paweł B. Dąbek & Roberto Brandão & Epari Ritesh Patro & Bojan Đurin & Walter Leal Filho & Yoshihide Wada & Bas van Ruijven & Keywan Ri, 2023. "Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage," Energies, MDPI, vol. 16(2), pages 1-20, January.
    4. Simon Lineykin & Abhishek Sharma & Moshe Averbukh, 2023. "Eventual Increase in Solar Electricity Production and Desalinated Water through the Formation of a Channel between the Mediterranean and the Dead Sea," Energies, MDPI, vol. 16(11), pages 1-17, May.
    5. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    6. Gilmore, Nicholas & Koskinen, Ilpo & van Gennip, Domenique & Paget, Greta & Burr, Patrick A. & Obbard, Edward G. & Daiyan, Rahman & Sproul, Alistair & Kay, Merlinde & Lennon, Alison & Konstantinou, Ge, 2022. "Clean energy futures: An Australian based foresight study," Energy, Elsevier, vol. 260(C).
    7. Yanyue Wang & Guohua Fang, 2022. "Joint Operation Modes and Economic Analysis of Nuclear Power and Pumped Storage Plants under Different Power Market Environments," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    8. Julian David Hunt & Andreas Nascimento & Oldrich Joel Romero Guzman & Gilton Carlos de Andrade Furtado & Carla Schwengber ten Caten & Fernanda Munari Caputo Tomé & Walter Leal Filho & Bojan Đurin & Ma, 2022. "Sedimentary Basin Water and Energy Storage: A Low Environmental Impact Option for the Bananal Basin," Energies, MDPI, vol. 15(12), pages 1-18, June.
    9. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    10. Sánchez-Pérez, P.A. & Staadecker, Martin & Szinai, Julia & Kurtz, Sarah & Hidalgo-Gonzalez, Patricia, 2022. "Effect of modeled time horizon on quantifying the need for long-duration storage," Applied Energy, Elsevier, vol. 317(C).
    11. Dao, Fang & Zou, Yidong & Zeng, Yun & Qian, Jing & Li, Xiang, 2023. "An intelligent CPSOGSA-based mixed H2/H∞ robust controller for the multi-hydro-turbine governing system with sharing common penstock," Renewable Energy, Elsevier, vol. 206(C), pages 481-497.
    12. Majid, A. & van Zyl, J.E. & Hall, J.W., 2022. "The influence of temporal variability and reservoir management on demand-response in the water sector," Applied Energy, Elsevier, vol. 305(C).
    13. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco & Costalonga, Leandro, 2022. "Seawater air-conditioning and ammonia district cooling: A solution for warm coastal regions," Energy, Elsevier, vol. 254(PB).
    14. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    15. Horst Werner Schmidt-Böcking & Gerhard Luther & Michael Düren & Matthias Puchta & Tom Bender & Andreas Garg & Bernhard Ernst & Heinz Frobeen, 2023. "Renewable Electric Energy Storage Systems by Storage Spheres on the Seabed of Deep Lakes or Oceans," Energies, MDPI, vol. 17(1), pages 1-17, December.
    16. Livia Pitorac & Kaspar Vereide & Leif Lia, 2020. "Technical Review of Existing Norwegian Pumped Storage Plants," Energies, MDPI, vol. 13(18), pages 1-20, September.
    17. Hunt, Julian David & Nascimento, Andreas & Caten, Carla Schwengber ten & Tomé, Fernanda Munari Caputo & Schneider, Paulo Smith & Thomazoni, André Luis Ribeiro & Castro, Nivalde José de & Brandão, Robe, 2022. "Energy crisis in Brazil: Impact of hydropower reservoir level on the river flow," Energy, Elsevier, vol. 239(PA).
    18. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2022. "Energy storage to solve the diurnal, weekly, and seasonal mismatch and achieve zero-carbon electricity consumption in buildings," Applied Energy, Elsevier, vol. 312(C).
    19. Sunil Prasad Lohani & Prekshya Gurung & Bhawana Gautam & Ural Kafle & David Fulford & Marc Jeuland, 2023. "Current status, prospects, and implications of renewable energy for achieving sustainable development goals in Nepal," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 572-585, February.
    20. Shan, Rui & Reagan, Jeremiah & Castellanos, Sergio & Kurtz, Sarah & Kittner, Noah, 2022. "Evaluating emerging long-duration energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    21. Hunt, Julian David & Jurasz, Jakub & Zakeri, Behnam & Nascimento, Andreas & Cross, Samuel & Caten, Carla Schwengber ten & de Jesus Pacheco, Diego Augusto & Pongpairoj, Pharima & Filho, Walter Leal & T, 2022. "Electric Truck Hydropower, a flexible solution to hydropower in mountainous regions," Energy, Elsevier, vol. 248(C).
    22. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Shen, Jianjian & Wu, Xinyu & Su, Huaying, 2022. "Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China," Energy, Elsevier, vol. 260(C).
    23. Pradhan, Anish & Marence, Miroslav & Franca, Mário J., 2021. "The adoption of Seawater Pump Storage Hydropower Systems increases the share of renewable energy production in Small Island Developing States," Renewable Energy, Elsevier, vol. 177(C), pages 448-460.
    24. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.
    25. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Jurasz, Jakub & Dąbek, Paweł B. & Barbosa, Paulo Sergio Franco & Brandão, Roberto & de Castro, Nivalde José & Leal Filho, Walter & Riahi, Ke, 2022. "Lift Energy Storage Technology: A solution for decentralized urban energy storage," Energy, Elsevier, vol. 254(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14555-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.