IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14270-3.html
   My bibliography  Save this article

Controlled release of H2S and NO gases through CO2-stimulated anion exchange

Author

Listed:
  • Shinsuke Ishihara

    (National Institute for Materials Science (NIMS))

  • Nobuo Iyi

    (National Institute for Materials Science (NIMS))

Abstract

Difficulties related to handling gases are a common bottleneck for applications. Although solid materials that release gas molecules under external stimuli exist, they require an external energy or a device for reliable operation. Herein, we report a CO2 stimulus for controlled release of p.p.m.-level functional gases from solid materials. A CO2-preferential anion-exchange property of layered double hydroxides and redox reactions in gas molecules are combined to release various gases (including H2S and NO) under ambient air from HS− and NO2−-incorporated layered double hydroxides, respectively. The profiles of gas release are mainly governed by the difference of pKa between H2CO3 and resulting acids (formed through protonation of interlayer anions), and are not so susceptible to the variation of relative humidity in air. Moreover, structural modulation of solid materials enables fine control of the gas release profiles. The use of safe, ubiquitous, and nearly constant (~400 p.p.m. in atmosphere) CO2 stimulus offers broad applications for functional gases.

Suggested Citation

  • Shinsuke Ishihara & Nobuo Iyi, 2020. "Controlled release of H2S and NO gases through CO2-stimulated anion exchange," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14270-3
    DOI: 10.1038/s41467-019-14270-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14270-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14270-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14270-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.