IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-13871-2.html
   My bibliography  Save this article

African cratonic lithosphere carved by mantle plumes

Author

Listed:
  • Nicolas Luca Celli

    (Dublin Institute for Advanced Studies
    Trinity College Dublin)

  • Sergei Lebedev

    (Dublin Institute for Advanced Studies)

  • Andrew J. Schaeffer

    (Natural Resources Canada)

  • Carmen Gaina

    (University of Oslo)

Abstract

How cratons, the ancient cores of continents, evolved since their formation over 2.5 Ga ago is debated. Seismic tomography can map the thick lithosphere of cratons, but its resolution is low in sparsely sampled continents. Here we show, using waveform tomography with a large, newly available dataset, that cratonic lithosphere beneath Africa is more complex and fragmented than seen previously. Most known diamondiferous kimberlites, indicative of thick lithosphere at the time of eruption, are where the lithosphere is thin today, implying surprisingly widespread lithospheric erosion over the last 200 Ma. Large igneous provinces, attributed to deep-mantle plumes, were emplaced near all lithosphere-loss locations, concurrently with or preceding the loss. This suggests that the cratonic roots foundered once modified by mantle plumes. Our results imply that the total volume of cratonic lithosphere has decreased since its Archean formation, with the fate of each craton depending on its movements relative to plumes.

Suggested Citation

  • Nicolas Luca Celli & Sergei Lebedev & Andrew J. Schaeffer & Carmen Gaina, 2020. "African cratonic lithosphere carved by mantle plumes," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13871-2
    DOI: 10.1038/s41467-019-13871-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13871-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13871-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-13871-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.