IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13586-4.html
   My bibliography  Save this article

Strong time dependence of ocean acidification mitigation by atmospheric carbon dioxide removal

Author

Listed:
  • M. Hofmann

    (Potsdam Institute for Climate Impact Research)

  • S. Mathesius

    (GEOMAR Helmholtz Centre for Ocean Research Kiel)

  • E. Kriegler

    (Potsdam Institute for Climate Impact Research)

  • D. P. van Vuuren

    (University Utrecht
    PBL Netherlands Environmental Assessment Agency)

  • H. J. Schellnhuber

    (Potsdam Institute for Climate Impact Research)

Abstract

In Paris in 2015, the global community agreed to limit global warming to well below 2 $${}^{\circ }$$∘C, aiming at even 1.5 $${}^{\circ }$$∘C. It is still uncertain whether these targets are sufficient to preserve marine ecosystems and prevent a severe alteration of marine biogeochemical cycles. Here, we show that stringent mitigation strategies consistent with the 1.5 $${}^{\circ }$$∘C scenario could, indeed, provoke a critical difference for the ocean’s carbon cycle and calcium carbonate saturation states. Favorable conditions for calcifying organisms like tropical corals and polar pteropods, both of major importance for large ecosystems, can only be maintained if CO$${}_{2}$$2 emissions fall rapidly between 2025 and 2050, potentially requiring an early deployment of CO$${}_{2}$$2 removal techniques in addition to drastic emissions reduction. Furthermore, this outcome can only be achieved if the terrestrial biosphere remains a carbon sink during the entire 21st century.

Suggested Citation

  • M. Hofmann & S. Mathesius & E. Kriegler & D. P. van Vuuren & H. J. Schellnhuber, 2019. "Strong time dependence of ocean acidification mitigation by atmospheric carbon dioxide removal," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13586-4
    DOI: 10.1038/s41467-019-13586-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13586-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13586-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bjoern Soergel & Elmar Kriegler & Isabelle Weindl & Sebastian Rauner & Alois Dirnaichner & Constantin Ruhe & Matthias Hofmann & Nico Bauer & Christoph Bertram & Benjamin Leon Bodirsky & Marian Leimbac, 2021. "A sustainable development pathway for climate action within the UN 2030 Agenda," Nature Climate Change, Nature, vol. 11(8), pages 656-664, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13586-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.