IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11161-5.html
   My bibliography  Save this article

The role of energy storage in deep decarbonization of electricity production

Author

Listed:
  • Maryam Arbabzadeh

    (University of Michigan)

  • Ramteen Sioshansi

    (The Ohio State University)

  • Jeremiah X. Johnson

    (North Carolina State University)

  • Gregory A. Keoleian

    (University of Michigan)

Abstract

Deep decarbonization of electricity production is a societal challenge that can be achieved with high penetrations of variable renewable energy. We investigate the potential of energy storage technologies to reduce renewable curtailment and CO2 emissions in California and Texas under varying emissions taxes. We show that without energy storage, adding 60 GW of renewables to California achieves 72% CO2 reductions (relative to a zero-renewables case) with close to one third of renewables being curtailed. Some energy storage technologies, on the other hand, allow 90% CO2 reductions from the same renewable penetrations with as little as 9% renewable curtailment. In Texas, the same renewable-deployment level leads to 54% emissions reductions with close to 3% renewable curtailment. Energy storage can allow 57% emissions reductions with as little as 0.3% renewable curtailment. We also find that generator flexibility can reduce curtailment and the amount of energy storage that is needed for renewable integration.

Suggested Citation

  • Maryam Arbabzadeh & Ramteen Sioshansi & Jeremiah X. Johnson & Gregory A. Keoleian, 2019. "The role of energy storage in deep decarbonization of electricity production," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11161-5
    DOI: 10.1038/s41467-019-11161-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11161-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11161-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11161-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.