IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10382-y.html
   My bibliography  Save this article

Record of low-temperature aqueous alteration of Martian zircon during the late Amazonian

Author

Listed:
  • Martin Guitreau

    (University of Manchester
    Laboratoire Magmas et Volcans)

  • Jessica Flahaut

    (CNRS/Université de Lorraine)

Abstract

Several lines of evidence support the presence of liquid water on Mars at different times. Among those, hydrated minerals testify to past aqueous weathering processes that can be precisely studied in Martian meteorites such as NWA 7533/7034. Bringing constraints on the timing of weathering of the Martian crust would help understand its evolution, the availability of liquid water, and the habitability of Mars. Here we present a new method based on U–Th–Pb isotope systems to assess if zircon crystals underwent low-temperature aqueous alteration, such as exemplified by Hadean-aged detrital crystals from Western Australia. Data for NWA 7533 zircons show evidence for aqueous alteration and modeling of U–Th–Pb isotope system evolution indicates that the latest alteration event occurred during the late Amazonian (227–56 Ma). This finding largely expands the time duration over which liquid water was available near the Martian surface, thereby suggesting that Mars might still be habitable.

Suggested Citation

  • Martin Guitreau & Jessica Flahaut, 2019. "Record of low-temperature aqueous alteration of Martian zircon during the late Amazonian," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10382-y
    DOI: 10.1038/s41467-019-10382-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10382-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10382-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10382-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.