IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09871-x.html
   My bibliography  Save this article

Regulation of locomotor speed and selection of active sets of neurons by V1 neurons

Author

Listed:
  • Yukiko Kimura

    (National Institute for Basic Biology
    The Graduate University for Advanced Studies)

  • Shin-ichi Higashijima

    (National Institute for Basic Biology
    The Graduate University for Advanced Studies)

Abstract

During fast movements in vertebrates, slow motor units are thought to be deactivated due to the mechanical demands of muscle contraction, but the associated neuronal mechanisms for this are unknown. Here, we perform functional analyses of spinal V1 neurons by selectively killing them in larval zebrafish, revealing two functions of V1 neurons. The first is the long-proposed role of V1 neurons: they play an important role in shortening the cycle period during swimming by providing in-phase inhibition. The second is that V1 neurons play an important role in the selection of active sets of neurons. We show that strong inhibitory inputs coming from V1 neurons play a crucial role in suppressing the activities of slow-type V2a and motor neurons, and, consequently, of slow muscles during fast swimming. Our results thus highlight the critical role of spinal inhibitory neurons for silencing slow-component neurons during fast movements.

Suggested Citation

  • Yukiko Kimura & Shin-ichi Higashijima, 2019. "Regulation of locomotor speed and selection of active sets of neurons by V1 neurons," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09871-x
    DOI: 10.1038/s41467-019-09871-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09871-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09871-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09871-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.