IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09239-1.html
   My bibliography  Save this article

How face perception unfolds over time

Author

Listed:
  • Katharina Dobs

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Leyla Isik

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Dimitrios Pantazis

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Nancy Kanwisher

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Within a fraction of a second of viewing a face, we have already determined its gender, age and identity. A full understanding of this remarkable feat will require a characterization of the computational steps it entails, along with the representations extracted at each. Here, we used magnetoencephalography (MEG) to measure the time course of neural responses to faces, thereby addressing two fundamental questions about how face processing unfolds over time. First, using representational similarity analysis, we found that facial gender and age information emerged before identity information, suggesting a coarse-to-fine processing of face dimensions. Second, identity and gender representations of familiar faces were enhanced very early on, suggesting that the behavioral benefit for familiar faces results from tuning of early feed-forward processing mechanisms. These findings start to reveal the time course of face processing in humans, and provide powerful new constraints on computational theories of face perception.

Suggested Citation

  • Katharina Dobs & Leyla Isik & Dimitrios Pantazis & Nancy Kanwisher, 2019. "How face perception unfolds over time," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09239-1
    DOI: 10.1038/s41467-019-09239-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09239-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09239-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo Quian Quiroga & Marta Boscaglia & Jacques Jonas & Hernan G. Rey & Xiaoqian Yan & Louis Maillard & Sophie Colnat-Coulbois & Laurent Koessler & Bruno Rossion, 2023. "Single neuron responses underlying face recognition in the human midfusiform face-selective cortex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Haider Al-Tahan & Yalda Mohsenzadeh, 2021. "Reconstructing feedback representations in the ventral visual pathway with a generative adversarial autoencoder," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    3. Irina Higgins & Le Chang & Victoria Langston & Demis Hassabis & Christopher Summerfield & Doris Tsao & Matthew Botvinick, 2021. "Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Katherine L. Hermann & Shridhar R. Singh & Isabelle A. Rosenthal & Dimitrios Pantazis & Bevil R. Conway, 2022. "Temporal dynamics of the neural representation of hue and luminance polarity," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09239-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.