IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v8y2018i11d10.1038_s41558-018-0295-6.html
   My bibliography  Save this article

Snow–atmosphere coupling in the Northern Hemisphere

Author

Listed:
  • Gina R. Henderson

    (Oceanography Department, US Naval Academy)

  • Yannick Peings

    (University of California, Irvine)

  • Jason C. Furtado

    (University of Oklahoma)

  • Paul J. Kushner

    (University of Toronto)

Abstract

Local and remote impacts of seasonal snow cover on atmospheric circulation have been explored extensively, with observational and modelling efforts focusing on how Eurasian autumn snow-cover variability potentially drives Northern Hemisphere atmospheric circulation via the generation of deep, planetary-scale atmospheric waves. Despite climate modelling advances, models remain challenged to reproduce the proposed sequence of processes by which snow cover can influence the atmosphere, calling into question the robustness of this coupling. Here, we summarize the current level of understanding of snow–atmosphere coupling, and the implications of this interaction under future climate change. Projected patterns of snow-cover variability and altered stratospheric conditions suggest a need for new model experiments to isolate the effect of projected changes in snow on the atmosphere.

Suggested Citation

  • Gina R. Henderson & Yannick Peings & Jason C. Furtado & Paul J. Kushner, 2018. "Snow–atmosphere coupling in the Northern Hemisphere," Nature Climate Change, Nature, vol. 8(11), pages 954-963, November.
  • Handle: RePEc:nat:natcli:v:8:y:2018:i:11:d:10.1038_s41558-018-0295-6
    DOI: 10.1038/s41558-018-0295-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-018-0295-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-018-0295-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Sun & Chunxiang Shi & Xiao Liang & Shuai Zhang & Junxia Gu & Shuai Han & Hui Jiang & Bin Xu & Qingbo Yu & Yujing Liang & Shuai Deng, 2023. "The Evaluation of Snow Depth Simulated by Different Land Surface Models in China Based on Station Observations," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    2. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:8:y:2018:i:11:d:10.1038_s41558-018-0295-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.