IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v15y2025i4d10.1038_s41558-025-02251-y.html
   My bibliography  Save this article

Preserving carbon dioxide removal to serve critical needs

Author

Listed:
  • Drew Shindell

    (Duke University)

  • Joeri Rogelj

    (Imperial College London
    Imperial College London
    International Institute for Applied Systems Analysis)

Abstract

Carbon dioxide removal (CDR) is critical to most net-zero pathways, especially given challenges due to slow decarbonization, hard-to-abate (H2A) economic activities and non-CO2 GHGs. However, land-based CDR, which is the most widely deployed currently and in future projections, requires extensive land and water. Here we examine least-cost 1.5 °C overshoot pathways, finding that 78 of 81 scenarios would require all available sustainable CDR to compensate for H2A emissions and overshoot. Use of CDR to compensate for emissions from easier-to-decarbonize sectors such as electricity would leave less available to compensate for H2A emissions, increasing system-wide costs of net zero or rendering such goals impossible. Such usage, however, is allowed in many jurisdictions and is widespread in voluntary markets. We suggest that rapidly transitioning CDR usage to exclusively compensate for H2A emissions and overshoot is required to prevent lower costs for near-term actors leading to larger long-term system-wide costs.

Suggested Citation

  • Drew Shindell & Joeri Rogelj, 2025. "Preserving carbon dioxide removal to serve critical needs," Nature Climate Change, Nature, vol. 15(4), pages 452-457, April.
  • Handle: RePEc:nat:natcli:v:15:y:2025:i:4:d:10.1038_s41558-025-02251-y
    DOI: 10.1038/s41558-025-02251-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-025-02251-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-025-02251-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:15:y:2025:i:4:d:10.1038_s41558-025-02251-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.