IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v25y2025i2d10.1007_s11067-024-09637-z.html
   My bibliography  Save this article

Facility Layout and Spatial Configuration Efficiency Assessment

Author

Listed:
  • Enbo Zhou

    (University of California at Santa Barbara
    University of California at Santa Barbara)

  • Alan T. Murray

    (University of California at Santa Barbara
    University of California at Santa Barbara)

Abstract

With rapid regional development and urbanization, many public and private facilities and infrastructures (e.g., sirens, cellphone base stations, bike sharing stations, wind turbines, etc.) require regular renovation or supplementation. Evaluating existing facility efficiency and expanding to new facility locations are of broad interest among stakeholders, including businesses, urban planners, government agencies, and the public more generally. Such evaluation can be used to improve overall social accessibility, equity and efficiency by reconfiguring or adding new facilities in the best way possible. A regularly distributed lattice is often viewed as an optimal configuration given important observed properties and characteristics. In this paper, we formulate a spatial optimization model to evaluate spatial coverage efficiency. Specifically, given two sets of points, the model seeks the optimal location and orientation of an idealized lattice to align with an existing facility configuration. The distance between existing facilities and the ideally configured lattice under the optimal alignment represents efficiency. An iterative heuristic based on gradient descent and spatial indexing is developed to solve this problem. Extensive computational experience demonstrates the importance of this problem and the effectiveness of the derived solution approach, as well as highlights assistance provided to decision makers in identifying inefficiencies as well as improving existing infrastructure service systems.

Suggested Citation

  • Enbo Zhou & Alan T. Murray, 2025. "Facility Layout and Spatial Configuration Efficiency Assessment," Networks and Spatial Economics, Springer, vol. 25(2), pages 487-511, June.
  • Handle: RePEc:kap:netspa:v:25:y:2025:i:2:d:10.1007_s11067-024-09637-z
    DOI: 10.1007/s11067-024-09637-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-024-09637-z
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-024-09637-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Birch, Colin P.D. & Oom, Sander P. & Beecham, Jonathan A., 2007. "Rectangular and hexagonal grids used for observation, experiment and simulation in ecology," Ecological Modelling, Elsevier, vol. 206(3), pages 347-359.
    2. Verter, Vedat & Cemal Dincer, M., 1992. "An integrated evaluation of facility location, capacity acquisition, and technology selection for designing global manufacturing strategies," European Journal of Operational Research, Elsevier, vol. 60(1), pages 1-18, July.
    3. Schilling, David A. & Revelle, Charles & Cohon, Jared & Elzinga, D. Jack, 1980. "Some models for fire protection locational decisions," European Journal of Operational Research, Elsevier, vol. 5(1), pages 1-7, July.
    4. Morton O’Kelly & Alan Murray, 2004. "A lattice covering model for evaluating existing service facilities," Papers in Regional Science, Springer;Regional Science Association International, vol. 83(3), pages 565-580, July.
    5. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    6. Liu, Kanglin & Liu, Changchun & Xiang, Xi & Tian, Zhili, 2023. "Testing facility location and dynamic capacity planning for pandemics with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 304(1), pages 150-168.
    7. Morton O’Kelly & Alan Murray, 2004. "A lattice covering model for evaluating existing service facilities," Economics of Governance, Springer, vol. 83(3), pages 565-580, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    2. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    3. Matisziw, Timothy C. & Murray, Alan T., 2009. "Siting a facility in continuous space to maximize coverage of a region," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 131-139, June.
    4. Md Shahab Uddin & Pennung Warnitchai, 2020. "Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1475-1496, July.
    5. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    6. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    7. Wenhao Yu & Yujie Chen & Menglin Guan, 2021. "Hierarchical siting of macro fire station and micro fire station," Environment and Planning B, , vol. 48(7), pages 1972-1988, September.
    8. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    9. Kim, Suji & Lee, Sujin & Ko, Eunjeong & Jang, Kitae & Yeo, Jiho, 2021. "Changes in car and bus usage amid the COVID-19 pandemic: Relationship with land use and land price," Journal of Transport Geography, Elsevier, vol. 96(C).
    10. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    11. Pacheco de Castro Flores Ribeiro, Paulo & Osório de Barros de Lima e Santos, José Manuel & Prudêncio Rafael Canadas, Maria João & Contente de Vinha Novais, Ana Maria & Ribeiro Ferraria Moreira, Franci, 2021. "Explaining farming systems spatial patterns: A farm-level choice model based on socioeconomic and biophysical drivers," Agricultural Systems, Elsevier, vol. 191(C).
    12. Goldshtein, Eitan & Soroker, Victoria & Sadeh, Asaf & Cohen, Yafit, 2025. "Canary palms in rural areas as invasion bridges: Exploring simulated red palm weevil spread across date palm plantations," Ecological Modelling, Elsevier, vol. 503(C).
    13. Francesca Peroni & Guglielmo Pristeri & Daniele Codato & Salvatore Eugenio Pappalardo & Massimo De Marchi, 2019. "Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    14. Jue Wang & Mei-Po Kwan & Yanwei Chai, 2018. "An Innovative Context-Based Crystal-Growth Activity Space Method for Environmental Exposure Assessment: A Study Using GIS and GPS Trajectory Data Collected in Chicago," IJERPH, MDPI, vol. 15(4), pages 1-24, April.
    15. Seyed Mohsen Mousavi & Ardeshir Bahreininejad & S. Nurmaya Musa & Farazila Yusof, 2017. "A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 191-206, January.
    16. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    17. Oliveira, Renata Lúcia Magalhães de & Dablanc, Laetitia & Schorung, Matthieu, 2022. "Changes in warehouse spatial patterns and rental prices: Are they related? Exploring the case of US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 104(C).
    18. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    19. Sungsoo Yoon & Youngjoo Moon & Jinah Jeong & Chan-Ryul Park & Wanmo Kang, 2021. "A Network-Based Approach for Reducing Pedestrian Exposure to PM 2.5 Induced by Road Traffic in Seoul," Land, MDPI, vol. 10(10), pages 1-14, October.
    20. Stephanie A. Snyder & Robert G. Haight, 2016. "Application of the Maximal Covering Location Problem to Habitat Reserve Site Selection," International Regional Science Review, , vol. 39(1), pages 28-47, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:25:y:2025:i:2:d:10.1007_s11067-024-09637-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.