Author
Abstract
With rapid regional development and urbanization, many public and private facilities and infrastructures (e.g., sirens, cellphone base stations, bike sharing stations, wind turbines, etc.) require regular renovation or supplementation. Evaluating existing facility efficiency and expanding to new facility locations are of broad interest among stakeholders, including businesses, urban planners, government agencies, and the public more generally. Such evaluation can be used to improve overall social accessibility, equity and efficiency by reconfiguring or adding new facilities in the best way possible. A regularly distributed lattice is often viewed as an optimal configuration given important observed properties and characteristics. In this paper, we formulate a spatial optimization model to evaluate spatial coverage efficiency. Specifically, given two sets of points, the model seeks the optimal location and orientation of an idealized lattice to align with an existing facility configuration. The distance between existing facilities and the ideally configured lattice under the optimal alignment represents efficiency. An iterative heuristic based on gradient descent and spatial indexing is developed to solve this problem. Extensive computational experience demonstrates the importance of this problem and the effectiveness of the derived solution approach, as well as highlights assistance provided to decision makers in identifying inefficiencies as well as improving existing infrastructure service systems.
Suggested Citation
Enbo Zhou & Alan T. Murray, 2025.
"Facility Layout and Spatial Configuration Efficiency Assessment,"
Networks and Spatial Economics, Springer, vol. 25(2), pages 487-511, June.
Handle:
RePEc:kap:netspa:v:25:y:2025:i:2:d:10.1007_s11067-024-09637-z
DOI: 10.1007/s11067-024-09637-z
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:25:y:2025:i:2:d:10.1007_s11067-024-09637-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.