Author
Abstract
Differential evolution (DE) algorithm is a classical natural-inspired optimization algorithm which has a good. However, with the deepening of research, some researchers found that the quality of the candidate solution of the population in the differential evolution algorithm is poor and its global search ability is not enough when solving the global optimization problem. Therefore, in order to solve the above problems, we proposed an adaptive differential evolution algorithm based on the data processing method and a new mutation strategy (ADEDPMS). In this paper, the data preprocessing method is implemented by k-means clustering algorithm, which is used to divide the initial population into multiple clusters according to the average value of fitness, and select candidate solutions in each cluster according to different proportions. This method improves the quality of candidate solutions of the population to a certain extent. In addition, in order to solve the problem of insufficient global search ability in differential evolution algorithm, we also proposed a new mutation strategy, which is called “DE/current-to- $${p}_{1}$$ p 1 best& $${p}_{2}$$ p 2 best”. This strategy guides the search direction of the differential evolution algorithm by selecting individuals with good fitness, so that its search range is in the most promising candidate solution region, and indirectly increases the population diversity of the algorithm. We also proposed an adaptive parameter control method, which can effectively balance the relationship between the exploration process and the exploitation process to achieve the best performance. In order to verify the effectiveness of the proposed algorithm, the ADEDPMS is compared with five optimization algorithms of the same type in the past three years, which are AAGSA, DFPSO, HGASSO, HHO and VAGWO. In the simulation experiment, 6 benchmark test functions and 4 engineering example problems are used, and the convergence accuracy, convergence speed and stability are fully compared. We used ADEDPMS to solve the dynamic economic dispatch (ED) problem with generator constraints. It is compared with the optimization algorithms used to solve the ED problem in the last three years which are AEFA, AVOA, OOA, SCA and TLBO. The experimental results show that compared with the five latest optimization algorithms proposed in the past three years to solve benchmark functions, engineering example problems and the ED problem, the proposed algorithm has strong competitiveness in each test index.
Suggested Citation
Ruxin Zhao & Wei Wang & Tingting Zhang & Chang Liu & Lixiang Fu & Jiajie Kang & Hongtan Zhang & Yang Shi & Chao Jiang, 2025.
"An Adaptive Differential Evolution Algorithm Based on Data Preprocessing Method and a New Mutation Strategy to Solve Dynamic Economic Dispatch Considering Generator Constraints,"
Computational Economics, Springer;Society for Computational Economics, vol. 66(1), pages 207-240, July.
Handle:
RePEc:kap:compec:v:66:y:2025:i:1:d:10.1007_s10614-024-10705-2
DOI: 10.1007/s10614-024-10705-2
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:66:y:2025:i:1:d:10.1007_s10614-024-10705-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.