IDEAS home Printed from
   My bibliography  Save this article

Bayesian Analysis of Student t Linear Regression with Unknown Change-Point and Application to Stock Data Analysis


  • Jin-Guan Lin


  • Ji Chen
  • Yong Li


This article devotes to studying the variance change-points problem in student t linear regression models. By exploiting the equivalence of the student t distribution and an appropriate scale mixture of normal distributions, a Bayesian approach combined with Gibbs sampling is developed to detect the single and multiple change points. Some simulation studies are performed to display the process of the detection and investigate the effects of the developed approach. Finally, for illustration, the Dow Jones index closed data of U.S. market are analyzed and three variance change-points are detected. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • Jin-Guan Lin & Ji Chen & Yong Li, 2012. "Bayesian Analysis of Student t Linear Regression with Unknown Change-Point and Application to Stock Data Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 203-217, October.
  • Handle: RePEc:kap:compec:v:40:y:2012:i:3:p:203-217
    DOI: 10.1007/s10614-011-9305-8

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jin-Guan Lin & Li-Xing Zhu & Feng-Chang Xie, 2009. "Heteroscedasticity diagnostics for t linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 59-77, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Shuaimin Kang & Guangying Liu & Howard Qi & Min Wang, 2018. "Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 459-477, August.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:40:y:2012:i:3:p:203-217. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.