IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v021i02.html
   My bibliography  Save this article

The WaveD Transform in R: Performs Fast Translation-Invariant Wavelet Deconvolution

Author

Listed:
  • Raimondo, Marc
  • Stewart, Michael

Abstract

This paper provides an introduction to a software package called waved making available all code necessary for reproducing the figures in the recently published articles on the WaveD transform for wavelet deconvolution of noisy signals. The forward WaveD transforms and their inverses can be computed using any wavelet from the Meyer family. The WaveD coefficients can be depicted according to time and resolution in several ways for data analysis. The algorithm which implements the translation invariant WaveD transform takes full advantage of the fast Fourier transform (FFT) and runs in O(n(log n)2)steps only. The waved package includes functions to perform thresholding and tne resolution tuning according to methods in the literature as well as newly designed visual and statistical tools for assessing WaveD fits. We give a waved tutorial session and review benchmark examples of noisy convolutions to illustrate the non-linear adaptive properties of wavelet deconvolution.

Suggested Citation

  • Raimondo, Marc & Stewart, Michael, 2007. "The WaveD Transform in R: Performs Fast Translation-Invariant Wavelet Deconvolution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i02).
  • Handle: RePEc:jss:jstsof:v:021:i02
    DOI: http://hdl.handle.net/10.18637/jss.v021.i02
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v021i02/v21i02.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v021i02/waved_1.0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v021i02/v21i02.R.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v021.i02?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Iain M. Johnstone & Gérard Kerkyacharian & Dominique Picard & Marc Raimondo, 2004. "Wavelet deconvolution in a periodic setting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 547-573, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissantz, Nicolai & Holzmann, Hajo, 2007. "Statistical inference for inverse problems," Technical Reports 2007,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Jérémie Bigot & Sébastien Van Bellegem, 2009. "Log‐density Deconvolution by Wavelet Thresholding," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 749-763, December.
    3. Chesneau, Christophe, 2007. "Regression with random design: A minimax study," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 40-53, January.
    4. J. Andrés Christen & Bruno Sansó & Mario Santana-Cibrian & Jorge X. Velasco-Hernández, 2016. "Bayesian deconvolution of oil well test data using Gaussian processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 721-737, March.
    5. Nicolai Bissantz & Hajo Holzmann, 2013. "Asymptotics for spectral regularization estimators in statistical inverse problems," Computational Statistics, Springer, vol. 28(2), pages 435-453, April.
    6. Abbaszadeh, Mohammad & Chesneau, Christophe & Doosti, Hassan, 2012. "Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 932-941.
    7. Maarten Jansen & Guy P. Nason & B. W. Silverman, 2009. "Multiscale methods for data on graphs and irregular multidimensional situations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 97-125, January.
    8. Birke, Melanie & Bissantz, Nicolai, 2007. "Shape constrained estimators in inverse regression models with convolution-type operator," Technical Reports 2007,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Christophe Chesneau, 2011. "On adaptive wavelet estimation of a quadratic functional from a deconvolution problem," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 405-429, April.
    10. Benhaddou, Rida, 2017. "On minimax convergence rates under Lp-risk for the anisotropic functional deconvolution model," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 120-125.
    11. Benhaddou, Rida, 2016. "Deconvolution model with fractional Gaussian noise: A minimax study," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 201-208.
    12. Petsa, Athanasia & Sapatinas, Theofanis, 2009. "Minimax convergence rates under the Lp-risk in the functional deconvolution model," Statistics & Probability Letters, Elsevier, vol. 79(13), pages 1568-1576, July.
    13. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Nicolai Bissantz & Gerda Claeskens & Hajo Holzmann & Axel Munk, 2009. "Testing for lack of fit in inverse regression—with applications to biophotonic imaging," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 25-48, January.
    15. Fabienne Comte & Charles-A. Cuenod & Marianna Pensky & Yves Rozenholc, 2017. "Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 69-94, January.
    16. repec:jss:jstsof:21:i02 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:021:i02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.