IDEAS home Printed from
   My bibliography  Save this article

A nonparametric method for asymmetrically extending signal extraction filters


  • Tucker McElroy


Two important problems in the X-11 seasonal adjustment methodology are the construction of standard errors and the handling of the boundaries. We adapt the ‘implied model approach’ of Kaiser and Maravall to achieve both objectives in a nonparametric fashion. The frequency response function of an X‐11 linear filter is used, together with the periodogram of the differenced data, to define spectral density estimates for signal and noise. These spectra are then used to define a matrix smoother, which in turn generates an estimate of the signal that is linear in the data. Estimates of the signal are provided at all time points in the sample, and the associated time‐varying signal extraction mean squared errors are a by‐product of the matrix smoother theory. After explaining our method, it is applied to popular nonparametric filters such as the Hodrick–Prescott (HP), the Henderson trend, and ideal low‐pass and band‐pass filters, as well as X‐11 seasonal adjustment, trend, and irregular filters. Finally, we illustrate the method on several time series and provide comparisons with X‐12‐ARIMA seasonal adjustments. Copyright (C) 2010 John Wiley & Sons, Ltd.

Suggested Citation

  • Tucker McElroy, 2011. "A nonparametric method for asymmetrically extending signal extraction filters," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 597-621, November.
  • Handle: RePEc:jof:jforec:v:30:y:2011:i:7:p:597-621

    Download full text from publisher

    File URL:
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Efectos calendario sobre la producción industrial en Colombia," BORRADORES DE ECONOMIA 011241, BANCO DE LA REPÚBLICA.
    2. Wildi Marc & McElroy Tucker, 2016. "Optimal Real-Time Filters for Linear Prediction Problems," Journal of Time Series Econometrics, De Gruyter, vol. 8(2), pages 155-192, July.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:30:y:2011:i:7:p:597-621. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.