IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Kalman filtering and smoothing for model‐based signal extraction that depend on time‐varying spectra

Listed author(s):
  • Siem Jan Koopman
  • Soon Yip Wong

We develop a flexible semi-parametric method for the introduction of time‐varying parameters in a model‐based signal extraction procedure. Dynamic model specifications for the parameters in the model are not required. We show that signal extraction based on Kalman filtering and smoothing can be made dependent on time‐varying sample spectra. Our new procedure starts with specifying the time‐varying spectrum as a semi‐parametric flexible spline function that can be formulated in state space form and can be treated by multivariate Kalman filter and smoothing methods. Next we show how a time series decomposition model can be made dependent on a time‐varying sample spectrum in a frequency domain analysis. The key insight is that the spectral likelihood function depends on the sample spectrum. The estimates of the model parameters are obtained by maximizing the spectral likelihood function. A time‐varying sample spectrum leads to a time‐varying spectral likelihood and hence we obtain time‐varying parameter estimates. The time series decomposition model with the resulting time‐varying parameters reflect the time‐varying spectrum accurately. This approach to model‐based signal extraction includes a bootstrap procedure to compute confidence intervals for the time‐varying parameter estimates. We illustrate the methodology by presenting a business cycle analysis for three quarterly US macroeconomic time series between 1947 and 2010. The empirical study provides strong evidence that the cyclical properties of macroeconomic time series have been changing over time. Copyright (C) 2010 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 30 (2011)
Issue (Month): 1 (January)
Pages: 147-167

in new window

Handle: RePEc:jof:jforec:v:30:y:2011:i:1:p:147-167
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:30:y:2011:i:1:p:147-167. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.