IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2024-165-4.html
   My bibliography  Save this article

Synthetic Social Media Influence Experimentation Via an Agentic Reinforcement Learning Large Language Model Bot

Author

Listed:
  • Bailu Jin
  • Weisi Guo

Abstract

Understanding the dynamics of public opinion evolution on online social platforms is crucial for understanding influence mechanisms and the provenance of information. Traditional influence analysis is typically divided into qualitative assessments of personal attributes (e.g., psychology of influence) and quantitative evaluations of influence power mechanisms (e.g., social network analysis). One challenge faced by researchers is the ethics of real-world experimentation and the lack of social influence data. In this study, we provide a novel simulated environment that combines agentic intelligence with Large Language Models (LLMs) to test topic-specific influence mechanisms ethically. Our framework contains agents that generate posts, form opinions on specific topics, and socially follow/unfollow each other based on the outcome of discussions. This simulation allows researchers to observe the evolution of how opinions form and how influence leaders emerge. Using our own framework, we design an opinion leader that utilizes Reinforcement Learning (RL) to adapt its linguistic interaction with the community to maximize its influence and followers over time. Our current findings reveal that constraining the action space and incorporating self-observation are key factors for achieving stable and consistent opinion leader generation for topic-specific influence. This demonstrates the simulation framework's capacity to create agents that can adapt to complex and unpredictable social dynamics. The work is important in an age of increasing online influence on social attitudes and emerging technologies.

Suggested Citation

  • Bailu Jin & Weisi Guo, 2025. "Synthetic Social Media Influence Experimentation Via an Agentic Reinforcement Learning Large Language Model Bot," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 28(3), pages 1-6.
  • Handle: RePEc:jas:jasssj:2024-165-4
    as

    Download full text from publisher

    File URL: https://www.jasss.org/28/3/6/6.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2024-165-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.