IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2022-44-2.html
   My bibliography  Save this article

Using Machine Learning for Agent Specifications in Agent-Based Models and Simulations: A Critical Review and Guidelines

Author

Abstract

Agent-based modelling and simulation (ABMS), whether simple toy models or complex data-driven ones, is regularly applied in various domains to study the system-level patterns arising from individual behaviour and interactions. However, ABMS still faces diverse challenges such as modelling more representative agents or improving computational efficiency. Research shows that machine learning (ML) techniques, when used in ABMS can address such challenges. Yet, the ABMS literature is still marginally leveraging the benefits of ML. One reason is the vastness of the ML domain, which makes it difficult to choose the appropriate ML technique to overcome a specific modelling challenge. This paper aims to bring ML more within reach of the ABMS community. We first conduct a structured literature review to investigate how the ABMS process uses ML techniques. We focus specifically on articles where ML is applied for the structural specifications of models such as agent decision-making and behaviour, rather than just for analysing output data. Given that modelling challenges are mainly linked to the purpose a model aims to serve (e.g., behavioural accuracy is required for predictive models), we frame our analysis within different modelling purposes. Our results show that Reinforcement Learning algorithms may increase the accuracy of behavioural modelling. Moreover, Decision Trees, and Bayesian Networks are common techniques for data pre-processing of agent behaviour. Based on the literature review results, we propose guidelines for purposefully integrating ML in ABMS. We conclude that ML techniques are specifically fit for currently underrepresented modelling purposes of social learning and illustration; they can be used in a transparent and interpretable manner.

Suggested Citation

  • Molood Ale Ebrahim Dehkordi & Jonas Lechner & Amineh Ghorbani & Igor Nikolic & Emile Chappin & Paulien Herder, 2023. "Using Machine Learning for Agent Specifications in Agent-Based Models and Simulations: A Critical Review and Guidelines," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(1), pages 1-9.
  • Handle: RePEc:jas:jasssj:2022-44-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/26/1/9/9.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Patrick Evans & Sumitra Ganesh, 2024. "Learning and Calibrating Heterogeneous Bounded Rational Market Behaviour with Multi-Agent Reinforcement Learning," Papers 2402.00787, arXiv.org.
    2. Zengqing Wu & Run Peng & Xu Han & Shuyuan Zheng & Yixin Zhang & Chuan Xiao, 2023. "Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations," Papers 2311.06330, arXiv.org, revised Dec 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2022-44-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.