Author
Listed:
- Henry Lam
(Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)
- Junhui Zhang
(Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027)
Abstract
We consider stochastic gradient estimation using only black-box function evaluations, where the function argument lies within a probability simplex. This problem is motivated from gradient-descent optimization procedures in multiple applications in distributionally robust analysis and inverse model calibration involving decision variables that are probability distributions. We are especially interested in obtaining gradient estimators where one or few sample observations or simulation runs apply simultaneously to all directions. Conventional zeroth-order gradient schemes such as simultaneous perturbation face challenges as the required moment conditions that allow the “canceling” of higher-order biases cannot be satisfied without violating the simplex constraints. We investigate a new set of required conditions on the random perturbation generator, which leads us to a class of implementable gradient estimators using Dirichlet mixtures. We study the statistical properties of these estimators and their utility in constrained stochastic approximation. We demonstrate the effectiveness of our procedures and compare with benchmarks via several numerical examples.
Suggested Citation
Henry Lam & Junhui Zhang, 2025.
"Distributionally Constrained Black-Box Stochastic Gradient Estimation and Optimization,"
Operations Research, INFORMS, vol. 73(5), pages 2680-2694, September.
Handle:
RePEc:inm:oropre:v:73:y:2025:i:5:p:2680-2694
DOI: 10.1287/opre.2021.0307
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:73:y:2025:i:5:p:2680-2694. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.