IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v71y2025i9p7888-7906.html
   My bibliography  Save this article

ChatGPT for Textual Analysis? How to Use Generative LLMs in Accounting Research

Author

Listed:
  • Ties de Kok

    (University of Washington, Seattle, Washington 98195)

Abstract

Generative large language models (GLLMs), such as ChatGPT and GPT-4 by OpenAI, are emerging as powerful tools for textual analysis tasks in accounting research. GLLMs can solve any textual analysis task solvable using nongenerative methods as well as tasks previously only solvable using human coding. Whereas GLLMs are new and powerful, they also come with limitations and present new challenges that require care and due diligence. This paper highlights the applications of GLLMs for accounting research and compares them with existing methods. It also provides a framework on how to effectively use GLLMs by addressing key considerations, such as model selection, prompt engineering, and ensuring construct validity. In a case study, I demonstrate the capabilities of GLLMs by detecting nonanswers in earnings conference calls, a traditionally challenging task to automate. The new GPT method achieves an accuracy of 96% and reduces the nonanswer error rate by 70% relative to the existing Gow et al. (2021) method. Finally, I discuss the importance of addressing bias, replicability, and data sharing concerns when using GLLMs. Taken together, this paper provides researchers, reviewers, and editors with the knowledge and tools to effectively use and evaluate GLLMs for academic research.

Suggested Citation

  • Ties de Kok, 2025. "ChatGPT for Textual Analysis? How to Use Generative LLMs in Accounting Research," Management Science, INFORMS, vol. 71(9), pages 7888-7906, September.
  • Handle: RePEc:inm:ormnsc:v:71:y:2025:i:9:p:7888-7906
    DOI: 10.1287/mnsc.2023.03253
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2023.03253
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2023.03253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:71:y:2025:i:9:p:7888-7906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.