IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v71y2025i5p3996-4012.html
   My bibliography  Save this article

Adaptive Preference Measurement with Unstructured Data

Author

Listed:
  • Ryan Dew

    (The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104)

Abstract

Many products are most meaningfully described using unstructured data such as text or images. Unstructured data are also common in e-commerce, in which products are often described by photos and text but not with standardized sets of attributes. Whereas much is known about how to efficiently measure consumer preferences when products can be meaningfully described by structured attributes, there is scant research on doing the same for unstructured data. This paper introduces a real-time, adaptive survey design framework for measuring preferences over unstructured data, leveraging Bayesian optimization. By adaptively choosing items to display based on uncertainty around a nonparametric utility model, the proposed method maximizes information gain per question, enabling quick estimation of individual-level preferences. The approach operates on embeddings of the unstructured data, thereby eliminating the requirement for manual coding of product attributes. We apply the method to measuring preferences over clothing and highlight its potential for both the general task of marketing research and the specific task of designing customer onboarding surveys to mitigate the cold-start recommendation problem. We also develop methods for interpreting the nonparametric utility functions, which allow us to reconstruct consumer valuations of discrete attributes, even for attributes that were not considered or available a priori.

Suggested Citation

  • Ryan Dew, 2025. "Adaptive Preference Measurement with Unstructured Data," Management Science, INFORMS, vol. 71(5), pages 3996-4012, May.
  • Handle: RePEc:inm:ormnsc:v:71:y:2025:i:5:p:3996-4012
    DOI: 10.1287/mnsc.2023.03775
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2023.03775
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2023.03775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:71:y:2025:i:5:p:3996-4012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.