Author
Listed:
- Junming Liu
(Department of Information Systems, City University of Hong Kong, Hong Kong SAR)
- Weiwei Chen
(Department of Supply Chain Management, Rutgers University, New Brunswick, New Jersey 07102)
- Leilei Sun
(School of Computer Science and Engineering, Beihang University, Beijing 100191, China)
Abstract
Bike sharing systems have been widely deployed in urban cities for first- and last-mile transportation. However, because of the geographical and temporal imbalance of bike demand, bikes need to be reallocated system-wide among stations during the night to maintain a high service level while minimizing demand loss due to stockout or overcapacity. Two technical challenges remain in optimizing the static bike rebalancing operations. One challenge is to accurately predict bike pickup and dropoff demand at each station, considering demand substitution effects and subsequently determining the optimal rebalancing quantity for each station. The other is to efficiently optimize the routing of multiple rebalancing vehicles for large-scale bike sharing systems, considering outlier stations with rebalancing quantities exceeding vehicle capacity. To this end, we propose an end-to-end solution to tackle the aforesaid challenges. Specifically, we first develop deep learning-based predictors that capture the time dependencies of station-level demand, the impact of weather conditions, and the demand substitution effect by nearby stations. Based on the demand rate, a sequential simulation-based demand loss estimator is developed to find the optimal rebalancing quantities that lead to the minimum expected demand loss. Then, a mixed integer linear programming model is formulated to optimize the routing problem of rebalancing vehicles. To address the computational challenge, we propose a data-driven decomposition algorithm to support a multivehicle multivisit rebalancing strategy by decomposing the multivehicle routing problem into smaller and tractable single-vehicle routing problems, which can be solved in parallel. Finally, extensive numerical experiments using real-world data from New York City Citi Bike demonstrate the accuracy of the proposed bike demand predictors, the impact of demand substitution, and the efficiency of the data-driven optimization framework.
Suggested Citation
Junming Liu & Weiwei Chen & Leilei Sun, 2025.
"A Data-Driven Optimization Framework for Static Rebalancing Operations in Bike Sharing Systems,"
INFORMS Journal on Computing, INFORMS, vol. 37(5), pages 1369-1390, September.
Handle:
RePEc:inm:orijoc:v:37:y:2025:i:5:p:1369-1390
DOI: 10.1287/ijoc.2022.0182
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:37:y:2025:i:5:p:1369-1390. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.